The Dzyaloshinskii–Moriya interaction is expected to be at the origin of interesting magnetic properties, such as multiferroicity, skyrmionic states, and exotic spin orders. Despite this, its theoretical determination is far from being established, neither from the point of view of ab initio methodologies nor from that of the extraction technique to be used afterward. Recently, a very efficient way to increase its amplitude has been demonstrated near the first-order spin–orbit coupling regime. Within the first-order regime, the anisotropic spin Hamiltonian involving the Dzyaloshinskii–Moriya operator becomes inappropriate. Nevertheless, in order to approach this regime and identify the spin Hamiltonian limitations, it is necessary to characterize the underlying physics. To this end, we have developed a simple electronic and spin–orbit model describing the first-order regime and used ab initio calculations to conduct a thorough methodological study.

1.
I. E.
Dzyaloshinskii
,
J. Exp. Theor. Phys.
19
,
960
(
1964
), see http://jetp.ras.ru/cgi-bin/e/index/e/19/4/p960?a=list.
2.
I.
Dzyaloshinsky
,
J. Phys. Chem. Solids
4
,
241
(
1958
).
4.
T.
Moriya
,
Solid State Commun.
20
,
291
(
1976
).
5.
P.
Bak
and
M. H.
Jensen
,
J. Phys. C: Solid State Phys.
13
,
L881
(
1980
).
6.
M.
Kataoka
and
O.
Nakanishi
,
J. Phys. Soc. Jpn.
50
,
3888
(
1981
).
7.
A. N.
Bogdanov
and
D. A.
Yablonskii
,
J. Exp. Theor. Phys.
68
,
101
(
1989
), see http://jetp.ras.ru/cgi-bin/e/index/e/68/1/p101?a=list.
8.
A.-O.
Mandru
,
O.
Yıldırım
,
R.
Tomasello
,
P.
Heistracher
,
M.
Penedo
,
A.
Giordano
,
D.
Suess
,
G.
Finocchio
, and
H. J.
Hug
,
Nat. Commun.
11
,
6365
(
2020
).
9.
X. Z.
Yu
,
Y.
Onose
,
N.
Kanazawa
,
J. H.
Park
,
J. H.
Han
,
Y.
Matsui
,
N.
Nagaosa
, and
Y.
Tokura
,
Nature
465
,
901
(
2010
).
10.
G.
Chen
,
A.
Mascaraque
,
H.
Jia
,
B.
Zimmermann
,
M.
Robertson
,
R. L.
Conte
,
M.
Hoffmann
,
M. A. G.
Barrio
,
H.
Ding
,
R.
Wiesendanger
,
E. G.
Michel
,
S.
Blügel
,
A. K.
Schmid
, and
K.
Liu
,
Sci. Adv.
6
,
eaba4924
(
2020
).
11.
A. D.
Buckingham
,
P.
Pyykkö
,
J. B.
Robert
, and
L.
Wiesenfeld
,
Mol. Phys.
46
,
177
(
1982
).
12.
R.
Ruamps
,
R.
Maurice
,
C.
de Graaf
, and
N.
Guihéry
,
Inorg. Chem.
53
,
4508
(
2014
).
13.
F.
Neese
,
J. Chem. Phys.
127
,
164112
(
2007
).
14.
L. F.
Chibotaru
,
L.
Ungur
,
C.
Aronica
,
H.
Elmoll
,
G.
Pilet
, and
D.
Luneau
,
J. Am. Chem. Soc.
130
,
12445
(
2008
).
15.
E.
Ruiz
,
J.
Cirera
,
J.
Cano
,
S.
Alvarez
,
C.
Loose
, and
J.
Kortus
,
Chem. Commun.
2008
,
52
.
16.
R.
Maurice
, “
Zero-field anisotropic spin Hamiltonians in first-row transition metal complexes: Theory, models and applications
,” Ph.D. thesis,
Université de Toulouse, Université Toulouse III—Paul Sabatier
,
2011
.
17.
R.
Maurice
,
N.
Guihéry
,
R.
Bastardis
, and
C.
de Graaf
,
J. Chem. Theory Comput.
6
,
55
(
2010
).
18.
R.
Maurice
,
R.
Bastardis
,
C.
de Graaf
,
N.
Suaud
,
T.
Mallah
, and
N.
Guihéry
,
J. Chem. Theory Comput.
5
,
2977
(
2009
).
19.
R.
Maurice
,
C.
de Graaf
, and
N.
Guihéry
,
Phys. Chem. Chem. Phys.
15
,
18784
(
2013
).
20.
R.
Maurice
,
K.
Sivalingam
,
D.
Ganyushin
,
N.
Guihéry
,
C.
de Graaf
, and
F.
Neese
,
Inorg. Chem.
50
,
6229
(
2011
).
21.
R.
Maurice
,
C.
de Graaf
, and
N.
Guihéry
,
Phys. Rev. B
81
,
214427
(
2010
).
22.
R.
Maurice
,
A.-M.
Pradipto
,
C.
de Graaf
, and
R.
Broer
,
Phys. Rev. B
86
,
024411
(
2012
).
23.
R.
Maurice
,
A. M.
Pradipto
,
N.
Guihéry
,
R.
Broer
, and
C.
de Graaf
,
J. Chem. Theory Comput.
6
,
3092
(
2010
).
24.
A.-M.
Pradipto
,
R.
Maurice
,
N.
Guihéry
,
C.
de Graaf
, and
R.
Broer
,
Phys. Rev. B
85
,
014409
(
2012
).
25.
M.-A.
Bouammali
,
N.
Suaud
,
C.
Martins
,
R.
Maurice
, and
N.
Guihéry
,
J. Chem. Phys.
154
,
134301
(
2021
).
27.
J.
des Cloizeaux
,
Nucl. Phys.
20
,
321
(
1960
).
28.
J. P.
Malrieu
,
R.
Caballol
,
C. J.
Calzado
,
C.
de Graaf
, and
N.
Guihéry
,
Chem. Rev.
114
,
429
(
2014
).
29.
L.
Adamowicz
,
R.
Caballol
,
J. P.
Malrieu
, and
J.
Meller
,
Chem. Phys. Lett.
259
,
619
(
1996
).
30.
31.
F.
Aquilante
,
J.
Autschbach
,
R. K.
Carlson
,
L. F.
Chibotaru
,
M. G.
Delcey
,
L.
De Vico
,
I.
Fdez Galván
,
N.
Ferré
,
L. M.
Frutos
,
L.
Gagliardi
,
M.
Garavelli
,
A.
Giussani
,
C. E.
Hoyer
,
G.
Li Manni
,
H.
Lischka
,
D.
Ma
,
P. Å.
Malmqvist
,
T.
Müller
,
A.
Nenov
,
M.
Olivucci
,
T. B.
Pedersen
,
D.
Peng
,
F.
Plasser
,
B.
Pritchard
,
M.
Reiher
,
I.
Rivalta
,
I.
Schapiro
,
J.
Segarra‐Martí
,
M.
Stenrup
,
D. G.
Truhlar
,
L.
Ungur
,
A.
Valentini
,
S.
Vancoillie
,
V.
Veryazov
,
V. P.
Vysotskiy
,
O.
Weingart
,
F.
Zapata
, and
R.
Lindh
,
J. Comput. Chem.
37
,
506
(
2016
).
32.
G.
Karlström
,
R.
Lindh
,
P.-Å.
Malmqvist
,
B. O.
Roos
,
U.
Ryde
,
V.
Veryazov
,
P.-O.
Widmark
,
M.
Cossi
,
B.
Schimmelpfennig
,
P.
Neogrady
, and
L.
Seijo
,
Comput. Mater. Sci.
28
,
222
(
2003
).
33.
F.
Aquilante
,
L.
De Vico
,
N.
Ferré
,
G.
Ghigo
,
P. Å.
Malmqvist
,
P.
Neogrády
,
T. B.
Pedersen
,
M.
Pitoňák
,
M.
Reiher
,
B. O.
Roos
,
L.
Serrano-Andrés
,
M.
Urban
,
V.
Veryazov
, and
R.
Lindh
,
J. Comput. Chem.
31
,
224
(
2010
).
34.
J.
Miralles
,
J.-P.
Daudey
, and
R.
Caballol
,
Chem. Phys. Lett.
198
,
555
(
1992
).
35.
J.
Miralles
,
O.
Castell
,
R.
Caballol
, and
J.-P.
Malrieu
,
Chem. Phys.
172
,
33
(
1993
).
36.
D.
Maynau
and
N.
Ben Amor
,
Chem. Phys. Lett.
286
,
211
(1998).
37.
P. Å.
Malmqvist
,
B. O.
Roos
, and
B.
Schimmelpfennig
,
Chem. Phys. Lett.
357
,
230
(
2002
).
38.
B. O.
Roos
,
R.
Lindh
,
P.-Å.
Malmqvist
,
V.
Veryazov
, and
P.-O.
Widmark
,
J. Phys. Chem. A
109
,
6575
(
2005
).
39.
T. M.
Dunn
,
Trans. Faraday Soc.
57
,
1441
(
1961
).

Supplementary Material

You do not currently have access to this content.