Strong light–matter coupling to form exciton– and vibropolaritons is increasingly touted as a powerful tool to alter the fundamental properties of organic materials. It is proposed that these states and their facile tunability can be used to rewrite molecular potential energy landscapes and redirect photophysical pathways, with applications from catalysis to electronic devices. Crucial to their photophysical properties is the exchange of energy between coherent, bright polaritons and incoherent dark states. One of the most potent tools to explore this interplay is transient absorption/reflectance spectroscopy. Previous studies have revealed unexpectedly long lifetimes of the coherent polariton states, for which there is no theoretical explanation. Applying these transient methods to a series of strong-coupled organic microcavities, we recover similar long-lived spectral effects. Based on transfer-matrix modeling of the transient experiment, we find that virtually the entire photoresponse results from photoexcitation effects other than the generation of polariton states. Our results suggest that the complex optical properties of polaritonic systems make them especially prone to misleading optical signatures and that more challenging high-time-resolution measurements on high-quality microcavities are necessary to uniquely distinguish the coherent polariton dynamics.

1.
D. J.
Tannor
and
S. A.
Rice
, “
Control of selectivity of chemical reaction via control of wave packet evolution
,”
J. Chem. Phys.
83
(
10
),
5013
5018
(
1985
).
2.
P.
Brumer
and
M.
Shapiro
, “
Laser control of molecular processes
,”
Annu. Rev. Phys. Chem.
43
(
1
),
257
282
(
1992
).
3.
W. S.
Warren
,
H.
Rabitz
, and
M.
Dahleh
, “
Coherent control of quantum dynamics: The dream is alive
,”
Science
259
(
5101
),
1581
1589
(
1993
).
4.
H.
Rabitz
,
R.
De Vivie-Riedle
,
M.
Motzkus
, and
K.
Kompa
, “
Whither the future of controlling quantum phenomena?
,”
Science
288
,
824
828
(
2000
).
5.
V. I.
Prokhorenko
,
A. M.
Nagy
, and
R. J. D.
Miller
, “
Coherent control of the population transfer in complex solvated molecules at weak excitation. An experimental study
,”
J. Chem. Phys.
122
(
18
),
184502
(
2005
).
6.
V. I.
Prokhorenko
,
A. M.
Nagy
,
S. A.
Waschuk
,
L. S.
Brown
,
R. R.
Birge
, and
R. J. D.
Miller
, “
Coherent control of retinal isomerization in bacteriorhodopsin
,”
Science
313
(
5791
),
1257
1261
(
2006
).
7.
J.
Holcman
,
A.
Al Choueiry
,
A.
Enderlin
,
S.
Hameau
,
T.
Barisien
, and
L.
Legrand
, “
Coherent control of the optical emission in a single organic quantum wire
,”
Nano Lett.
11
(
10
),
4496
4502
(
2011
).
8.
M.
Delor
,
P. A.
Scattergood
,
I. V.
Sazanovich
,
A. W.
Parker
,
G. M.
Greetham
,
A. J. H. M.
Meijer
,
M.
Towrie
, and
J. A.
Weinstein
, “
Toward control of electron transfer in donor-acceptor molecules by bond-specific infrared excitation
,”
Science
346
(
6216
),
1492
1495
(
2014
).
9.
M.
Liebel
and
P.
Kukura
, “
Lack of evidence for phase-only control of retinal photoisomerization in the strict one-photon limit
,”
Nat. Chem.
9
,
45
49
(
2016
).
10.
F.
Herrera
and
F. C.
Spano
, “
Cavity-controlled chemistry in molecular ensembles
,”
Phys. Rev. Lett.
116
(
23
),
238301
(
2016
).
11.
F.
Herrera
and
F. C.
Spano
, “
Dark vibronic polaritons and the spectroscopy of organic microcavities
,”
Phys. Rev. Lett.
118
(
22
),
223601
(
2017
).
12.
J.
Fregoni
,
G.
Granucci
,
M.
Persico
, and
S.
Corni
, “
Strong coupling with light enhances the photoisomerization quantum yield of azobenzene
,”
Chem
6
(
1
),
250
265
(
2020
).
13.
J.
Flick
,
M.
Ruggenthaler
,
H.
Appel
, and
A.
Rubio
, “
Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry
,”
Proc. Natl. Acad. Sci. U. S. A.
114
(
12
),
3026
3034
(
2017
).
14.
F.
Herrera
and
F. C.
Spano
, “
Absorption and photoluminescence in organic cavity QED
,”
Phys. Rev. A
95
(
5
),
053867
(
2017
).
15.
F.
Herrera
and
F. C.
Spano
, “
Theory of nanoscale organic cavities: The essential role of vibration-photon dressed states
,”
ACS Photonics
5
(
1
),
65
79
(
2018
).
16.
R. F.
Ribeiro
,
L. A.
Martínez-Martínez
,
M.
Du
,
J.
Campos-Gonzalez-Angulo
, and
J.
Yuen-Zhou
, “
Polariton chemistry: Controlling molecular dynamics with optical cavities
,”
Chem. Sci.
9
(
30
),
6325
6339
(
2018
).
17.
J.
del Pino
,
J.
Feist
, and
F. J.
Garcia-Vidal
, “
Quantum theory of collective strong coupling of molecular vibrations with a microcavity mode
,”
New J. Phys.
17
(
5
),
053040
(
2015
).
18.
C.
Gonzalez-Ballestero
,
J.
Feist
,
E.
Gonzalo Badía
,
E.
Moreno
, and
F. J.
Garcia-Vidal
, “
Uncoupled dark states can inherit polaritonic properties
,”
Phys. Rev. Lett.
117
(
15
),
156402
(
2016
).
19.
J. A.
Ćwik
,
P.
Kirton
,
S.
De Liberato
, and
J.
Keeling
, “
Excitonic spectral features in strongly coupled organic polaritons
,”
Phys. Rev. A
93
(
3
),
033840
(
2016
).
20.
M. A.
Zeb
,
P. G.
Kirton
, and
J.
Keeling
, “
Exact states and spectra of vibrationally dressed polaritons
,”
ACS Photonics
5
(
1
),
249
257
(
2018
).
21.
J.
Feist
,
J.
Galego
, and
F. J.
Garcia-Vidal
, “
Polaritonic chemistry with organic molecules
,”
ACS Photonics
5
(
1
),
205
216
(
2018
).
22.
J.
Galego
,
F. J.
Garcia-Vidal
, and
J.
Feist
, “
Suppressing photochemical reactions with quantized light fields
,”
Nat. Commun.
7
,
13841
(
2016
).
23.
J.
Galego
,
F. J.
Garcia-Vidal
, and
J.
Feist
, “
Cavity-induced modifications of molecular structure in the strong coupling regime
,”
Phys. Rev. X
5
,
041022
(
2015
).
24.
D. M.
Coles
,
Y.
Yang
,
Y.
Wang
,
R. T.
Grant
,
R. A.
Taylor
,
S. K.
Saikin
,
A.
Aspuru-Guzik
,
D. G.
Lidzey
,
J. K.-H.
Tang
, and
J. M.
Smith
, “
Strong coupling between chlorosomes of photosynthetic bacteria and a confined optical cavity mode
,”
Nat. Commun.
5
,
5561
(
2014
).
25.
D.
Coles
,
L. C.
Flatten
,
T.
Sydney
,
E.
Hounslow
,
S. K.
Saikin
,
A.
Aspuru‐Guzik
,
V.
Vedral
,
J. K. H.
Tang
,
R. A.
Taylor
,
J. M.
Smith
, and
D. G.
Lidzey
, “
A nanophotonic structure containing living photosynthetic bacteria
,”
Small
13
(
38
),
1701777
(
2017
).
26.
A.
Thomas
,
L.
Lethuillier-Karl
,
K.
Nagarajan
,
R. M. A.
Vergauwe
,
J.
George
,
T.
Chervy
,
A.
Shalabney
,
E.
Devaux
,
C.
Genet
,
J.
Moran
, and
T. W.
Ebbesen
, “
Tilting a ground-state reactivity landscape by vibrational strong coupling
,”
Science
363
(
6427
),
615
619
(
2019
).
27.
B.
Xiang
,
R. F.
Ribeiro
,
M.
Du
,
L.
Chen
,
Z.
Yang
,
J.
Wang
,
J.
Yuen-Zhou
, and
W.
Xiong
, “
Intermolecular vibrational energy transfer enabled by microcavity strong light–matter coupling
,”
Science
368
(
6491
),
665
667
(
2020
).
28.
J. A.
Hutchison
,
T.
Schwartz
,
C.
Genet
,
E.
Devaux
, and
T. W.
Ebbesen
, “
Modifying chemical landscapes by coupling to vacuum fields
,”
Angew. Chem., Int. Ed.
51
(
7
),
1592
1596
(
2012
).
29.
R. M. A.
Vergauwe
,
A.
Thomas
,
K.
Nagarajan
,
A.
Shalabney
,
J.
George
,
T.
Chervy
,
M.
Seidel
,
E.
Devaux
,
V.
Torbeev
, and
T. W.
Ebbesen
, “
Modification of enzyme activity by vibrational strong coupling of water
,”
Angew. Chem., Int. Ed.
58
(
43
),
15324
15328
(
2019
).
30.
E.
Orgiu
,
J.
George
,
J. A.
Hutchison
,
E.
Devaux
,
J. F.
Dayen
,
B.
Doudin
,
F.
Stellacci
,
C.
Genet
,
J.
Schachenmayer
,
C.
Genes
,
G.
Pupillo
,
P.
Samorì
, and
T. W.
Ebbesen
, “
Conductivity in organic semiconductors hybridized with the vacuum field
,”
Nat. Mater.
14
,
1123
1130
(
2015
).
31.
D. M.
Coles
,
N.
Somaschi
,
P.
Michetti
,
C.
Clark
,
P. G.
Lagoudakis
,
P. G.
Savvidis
, and
D. G.
Lidzey
, “
Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity
,”
Nat. Mater.
13
(
7
),
712
719
(
2014
).
32.
X.
Zhong
,
T.
Chervy
,
L.
Zhang
,
A.
Thomas
,
J.
George
,
C.
Genet
,
J. A.
Hutchison
, and
T. W.
Ebbesen
, “
Energy transfer between spatially separated entangled molecules
,”
Angew. Chem., Int. Ed.
56
(
31
),
9034
9038
(
2017
).
33.
K.
Georgiou
,
P.
Michetti
,
L.
Gai
,
M.
Cavazzini
,
Z.
Shen
, and
D. G.
Lidzey
, “
Control over energy transfer between fluorescent BODIPY dyes in a strongly coupled microcavity
,”
ACS Photonics
5
(
1
),
258
266
(
2018
).
34.
K.
Stranius
,
M.
Hertzog
, and
K.
Börjesson
, “
Selective manipulation of electronically excited states through strong light–matter interactions
,”
Nat. Commun.
9
(
1
),
2273
(
2018
).
35.
S.
Takahashi
,
K.
Watanabe
, and
Y.
Matsumoto
, “
Singlet fission of amorphous rubrene modulated by polariton formation
,”
J. Chem. Phys.
151
(
7
),
074703
(
2019
).
36.
A. M.
Berghuis
,
A.
Halpin
,
Q.
Le‐Van
,
M.
Ramezani
,
S.
Wang
,
S.
Murai
, and
J.
Gómez Rivas
, “
Enhanced delayed fluorescence in tetracene crystals by strong light‐matter coupling
,”
Adv. Funct. Mater.
29
,
1901317
(
2019
).
37.
D.
Polak
,
R.
Jayaprakash
,
T. P.
Lyons
,
L. Á.
Martínez-Martínez
,
A.
Leventis
,
K. J.
Fallon
,
H.
Coulthard
,
D. G.
Bossanyi
,
K.
Georgiou
,
A. J.
Petty
 II
,
J.
Anthony
,
H.
Bronstein
,
J.
Yuen-Zhou
,
A. I.
Tartakovskii
,
J.
Clark
, and
A. J.
Musser
, “
Manipulating molecules with strong coupling: Harvesting triplet excitons in organic exciton microcavities
,”
Chem. Sci.
11
(
2
),
343
354
(
2020
).
38.
D. G.
Lidzey
,
D. D. C.
Bradley
,
M. S.
Skolnick
,
T.
Virgili
,
S.
Walker
, and
D. M.
Whittaker
, “
Strong exciton-photon coupling in an organic semiconductor microcavity
,”
Nature
395
,
53
55
(
1998
).
39.
D. G.
Lidzey
,
D. D. C.
Bradley
,
T.
Virgili
,
A.
Armitage
,
M. S.
Skolnick
, and
S.
Walker
, “
Room temperature polariton emission from strongly coupled organic semiconductor microcavities
,”
Phys. Rev. Lett.
82
(
16
),
3316
(
1999
).
40.
D. M.
Coles
,
R. T.
Grant
,
D. G.
Lidzey
,
C.
Clark
, and
P. G.
Lagoudakis
, “
Imaging the polariton relaxation bottleneck in strongly coupled organic semiconductor microcavities
,”
Phys. Rev. B
88
,
121303
(
2013
).
41.
R. T.
Grant
,
P.
Michetti
,
A. J.
Musser
,
P.
Gregoire
,
T.
Virgili
,
E.
Vella
,
M.
Cavazzini
,
K.
Georgiou
,
F.
Galeotti
,
C.
Clark
,
J.
Clark
,
C.
Silva
, and
D. G.
Lidzey
, “
Efficient radiative pumping of polaritons in a strongly coupled microcavity by a fluorescent molecular dye
,”
Adv. Opt. Mater.
4
(
10
),
1615
1623
(
2016
).
42.
J. D.
Plumhof
,
T.
Stöferle
,
L.
Mai
,
U.
Scherf
, and
R. F.
Mahrt
, “
Room-temperature Bose-Einstein condensation of cavity exciton-polaritons in a polymer
,”
Nat. Mater.
13
(
4
),
247
252
(
2014
).
43.
A.
Graf
,
M.
Held
,
Y.
Zakharko
,
L.
Tropf
,
M. C.
Gather
, and
J.
Zaumseil
, “
Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities
,”
Nat. Mater.
16
(
9
),
911
917
(
2017
).
44.
A.
Graf
,
L.
Tropf
,
Y.
Zakharko
,
J.
Zaumseil
, and
M. C.
Gather
, “
Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities
,”
Nat. Commun.
7
,
13078
(
2016
).
45.
D. M.
Coles
,
P.
Michetti
,
C.
Clark
,
W. C.
Tsoi
,
A. M.
Adawi
,
J.-S.
Kim
, and
D. G.
Lidzey
, “
Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities
,”
Adv. Funct. Mater.
21
,
3691
3696
(
2011
).
46.
J.
Keeling
and
S.
Kéna-Cohen
, “
Bose–Einstein condensation of exciton-polaritons in organic microcavities
,”
Annu. Rev. Phys. Chem.
71
(
1
),
435
459
(
2020
).
47.
V. M.
Agranovich
,
M.
Litinskaia
, and
D. G.
Lidzey
, “
Cavity polaritons in microcavities containing disordered organic semiconductors
,”
Phys. Rev. B
67
,
085311
(
2003
).
48.
M.
Litinskaya
,
P.
Reineker
, and
V. M.
Agranovich
, “
Fast polariton relaxation in strongly coupled organic microcavities
,”
J. Lumin.
110
(
4
),
364
372
(
2004
).
49.
T.
Virgili
,
D.
Coles
,
A. M.
Adawi
,
C.
Clark
,
P.
Michetti
,
S. K.
Rajendran
,
D.
Brida
,
D.
Polli
,
G.
Cerullo
, and
D. G.
Lidzey
, “
Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity
,”
Phys. Rev. B
83
,
245309
(
2011
).
50.
T.
Schwartz
,
J. A.
Hutchison
,
J.
Léonard
,
C.
Genet
,
S.
Haacke
, and
T. W.
Ebbesen
, “
Polariton dynamics under strong light-molecule coupling
,”
ChemPhysChem
14
(
1
),
125
131
(
2013
).
51.
C. A.
Delpo
,
B.
Kudisch
,
K. H.
Park
,
S.-U.-Z.
Khan
,
F.
Fassioli
,
D.
Fausti
,
B. P.
Rand
, and
G. D.
Scholes
, “
Polariton transitions in femtosecond transient absorption studies of ultrastrong light-molecule coupling
,”
J. Phys. Chem. Lett.
11
(
7
),
2667
2674
(
2020
).
52.
A. G.
Avramenko
and
A. S.
Rury
, “
Quantum control of ultrafast internal conversion using nanoconfined virtual photons
,”
J. Phys. Chem. Lett.
11
(
3
),
1013
1021
(
2020
).
53.
G. G.
Rozenman
,
K.
Akulov
,
A.
Golombek
, and
T.
Schwartz
, “
Long-range transport of organic exciton-polaritons revealed by ultrafast microscopy
,”
ACS Photonics
5
(
1
),
105
110
(
2018
).
54.
L.
Mewes
,
M.
Wang
,
R. A.
Ingle
,
K.
Börjesson
, and
M.
Chergui
, “
Energy relaxation pathways between light-matter states revealed by coherent two-dimensional spectroscopy
,”
Commun. Phys.
3
(
1
),
157
(
2020
).
55.
X.
Zhong
,
T.
Chervy
,
S.
Wang
,
J.
George
,
A.
Thomas
,
J. A.
Hutchison
,
E.
Devaux
,
C.
Genet
, and
T. W.
Ebbesen
, “
Non-radiative energy transfer mediated by hybrid light-matter states
,”
Angew. Chem., Int. Ed.
55
,
6202
6206
(
2016
).
56.
A. D.
Dunkelberger
,
B. T.
Spann
,
K. P.
Fears
,
B. S.
Simpkins
, and
J. C.
Owrutsky
, “
Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons
,”
Nat. Commun.
7
,
13504
(
2016
).
57.
A. D.
Dunkelberger
,
R. B.
Davidson
,
W.
Ahn
,
B. S.
Simpkins
, and
J. C.
Owrutsky
, “
Ultrafast transmission modulation and recovery via vibrational strong coupling
,”
J. Phys. Chem. A
122
(
4
),
965
971
(
2018
).
58.
B.
Xiang
,
R. F.
Ribeiro
,
L.
Chen
,
J.
Wang
,
M.
Du
,
J.
Yuen-Zhou
, and
W.
Xiong
, “
State-selective polariton to dark state relaxation dynamics
,”
J. Phys. Chem. A
123
(
28
),
5918
5927
(
2019
).
59.
B.
Xiang
,
R. F.
Ribeiro
,
Y.
Li
,
A. D.
Dunkelberger
,
B. B.
Simpkins
,
J.
Yuen-Zhou
, and
W.
Xiong
, “
Manipulating optical nonlinearities of molecular polaritons by delocalization
,”
Sci. Adv.
5
(
9
),
eaax5196
(
2019
).
60.
T.
Yagafarov
,
D.
Sannikov
,
A.
Zasedatelev
,
K.
Georgiou
,
A.
Baranikov
,
O.
Kyriienko
,
I.
Shelykh
,
L.
Gai
,
Z.
Shen
,
D.
Lidzey
, and
P.
Lagoudakis
, “
Mechanisms of blueshifts in organic polariton condensates
,”
Commun. Phys.
3
(
1
),
18
(
2020
).
61.
B.
Liu
,
V. M.
Menon
, and
M. Y.
Sfeir
, “
The role of long-lived excitons in the dynamics of strongly coupled molecular polaritons
,”
ACS Photonics
7
(
8
),
2292
2301
(
2020
).
62.
B.
Liu
,
V. M.
Menon
, and
M. Y.
Sfeir
, “
Ultrafast thermal modification of strong coupling in an organic microcavity
,”
APL Photonics
6
(
1
),
016103
(
2021
).
63.
Z.
Wang
,
Y.
Xie
,
K.
Xu
,
J.
Zhao
, and
K. D.
Glusac
, “
Diiodobodipy-styrylbodipy dyads: Preparation and study of the intersystem crossing and fluorescence resonance energy transfer
,”
J. Phys. Chem. A
119
(
26
),
6791
6806
(
2015
).
64.
R. T.
Grant
,
R.
Jayaprakash
,
D. M.
Coles
,
A.
Musser
,
S.
De Liberato
,
I. D. W.
Samuel
,
G. A.
Turnbull
,
J.
Clark
, and
D. G.
Lidzey
, “
Strong coupling in a microcavity containing β-carotene
,”
Opt. Express
26
(
3
),
3320
(
2018
).
65.
S. A.
Furman
and
A. V.
Tikhonravov
, “
Spectral characteristics of multilayer coatings: Theory
,” in
Basics of Optics of Multilayer Systems
(
Atlantica Séguier Frontières
,
Paris
,
1992
), pp.
1
102
.
66.
M.
Liebel
,
C.
Schnedermann
, and
P.
Kukura
, “
Sub-10-fs pulses tunable from 480 to 980 nm from a NOPA pumped by an Yb:KGW source
,”
Opt. Lett.
39
(
14
),
4112
(
2014
).
67.
A. J.
Musser
,
S. K.
Rajendran
,
K.
Georgiou
,
L.
Gai
,
R. T.
Grant
,
Z.
Shen
,
M.
Cavazzini
,
A.
Ruseckas
,
G. A.
Turnbull
,
I. D. W.
Samuel
,
J.
Clark
, and
D. G.
Lidzey
, “
Intermolecular states in organic dye dispersions: Excimers vs. aggregates
,”
J. Mater. Chem. C
5
(
33
),
8380
8389
(
2017
).
68.
K.
Georgiou
,
R.
Jayaprakash
,
A.
Askitopoulos
,
D. M.
Coles
,
P. G.
Lagoudakis
, and
D. G.
Lidzey
, “
Generation of anti-Stokes fluorescence in a strongly coupled organic semiconductor microcavity
,”
ACS Photonics
5
(
11
),
4343
4351
(
2018
).
69.
T.
Cookson
,
K.
Georgiou
,
A.
Zasedatelev
,
R. T.
Grant
,
T.
Virgili
,
M.
Cavazzini
,
F.
Galeotti
,
C.
Clark
,
N. G.
Berloff
,
D. G.
Lidzey
, and
P. G.
Lagoudakis
, “
A yellow polariton condensate in a dye filled microcavity
,”
Adv. Opt. Mater.
5
(
18
),
1700203
(
2017
).
70.
C.
Schäfer
,
J.
Mony
,
T.
Olsson
, and
K.
Börjesson
, “
Entropic mixing allows monomeric-like absorption in neat BODIPY films
,”
Chem. -Eur. J.
26
(
63
),
14295
14299
(
2020
).
71.
D.
Sannikov
,
T.
Yagafarov
,
K.
Georgiou
,
A.
Zasedatelev
,
A.
Baranikov
,
L.
Gai
,
Z.
Shen
,
D. G.
Lidzey
, and
P.
Lagoudakis
, “
Room temperature broadband polariton lasing from a dye-filled microcavity
,”
Adv. Opt. Mater.
7
(
17
),
1900163
(
2019
).
72.
V.
Savona
,
L. C.
Andreani
,
P.
Schwendimann
, and
A.
Quattropani
, “
Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes
,”
Solid State Commun.
93
(
9
),
733
739
(
1995
).
73.
R.
Montero
,
V.
Martínez-Martínez
,
A.
Longarte
,
N.
Epelde-Elezcano
,
E.
Palao
,
I.
Lamas
,
H.
Manzano
,
A. R.
Agarrabeitia
,
I.
López Arbeloa
,
M. J.
Ortiz
, and
I.
Garcia-Moreno
, “
Singlet fission mediated photophysics of BODIPY dimers
,”
J. Phys. Chem. Lett.
9
(
3
),
641
646
(
2018
).
74.
D. G.
Lidzey
and
D. M.
Coles
, “
Strong coupling in organic and hybrid-semiconductor microcavity structures
,” in
Organic and Hybrid Photonic Crystals
(
Springer International Publishing
,
Cham
,
2015
), pp.
243
273
.
75.
B. I.
Afinogenov
,
V. O.
Bessonov
,
I. V.
Soboleva
, and
A. A.
Fedyanin
, “
Ultrafast all-optical light control with Tamm plasmons in photonic nanostructures
,”
ACS Photonics
6
(
4
),
844
850
(
2019
).
76.
J.
Kuttruff
,
D.
Garoli
,
J.
Allerbeck
,
R.
Krahne
,
A.
De Luca
,
D.
Brida
,
V.
Caligiuri
, and
N.
Maccaferri
, “
Ultrafast all-optical switching enabled by epsilon-near-zero-tailored absorption in metal-insulator nanocavities
,”
Commun. Phys.
3
(
1
),
114
(
2020
).
77.
M.
Ramezani
,
A.
Halpin
,
S.
Wang
,
M.
Berghuis
, and
J. G.
Rivas
, “
Ultrafast dynamics of nonequilibrium organic exciton-polariton condensates
,”
Nano Lett.
19
(
12
),
8590
8596
(
2019
).
78.
G. S.
Kanner
,
S.
Frolov
, and
Z. V.
Vardeny
, “
Photoinduced strain as a probe of acoustical and electronic properties of conducting polymers
,”
Mod. Phys. Lett. B
09
(
26n27
),
1701
1717
(
1995
).
79.
J. K.
Cooper
,
S. E.
Reyes-Lillo
,
L. H.
Hess
,
C.-M.
Jiang
,
J. B.
Neaton
, and
I. D.
Sharp
, “
Physical origins of the transient absorption spectra and dynamics in thin-film semiconductors: The case of BiVO4
,”
J. Phys. Chem. C
122
(
36
),
20642
20652
(
2018
).
80.
J.
Zhu
,
X.
Wu
,
D. M.
Lattery
,
W.
Zheng
, and
X.
Wang
, “
The ultrafast laser pump-probe technique for thermal characterization of materials with micro/nanostructures
,”
Nanoscale Microscale Thermophys. Eng.
21
(
3
),
177
198
(
2017
).
81.
E.
Olejnik
,
B.
Pandit
,
T.
Basel
,
E.
Lafalce
,
C.-X.
Sheng
,
C.
Zhang
,
X.
Jiang
, and
Z. V.
Vardeny
, “
Ultrafast optical studies of ordered poly(3-thienylene-vinylene) films
,”
Phys. Rev. B
85
(
23
),
235201
(
2012
).
82.
S.
Albert-Seifried
and
R. H.
Friend
, “
Measurement of thermal modulation of optical absorption in pump-probe spectroscopy of semiconducting polymers
,”
Appl. Phys. Lett.
98
(
22
),
223304
(
2011
).
83.
A.
Rao
,
M. W. B.
Wilson
,
S.
Albert-Seifried
,
R.
Di Pietro
, and
R. H.
Friend
, “
Photophysics of pentacene thin films: The role of exciton fission and heating effects
,”
Phys. Rev. B
84
(
19
),
195411
(
2011
).
84.
A. K.
Le
,
J. A.
Bender
, and
S. T.
Roberts
, “
Slow singlet fission observed in a polycrystalline perylenediimide thin film
,”
J. Phys. Chem. Lett.
7
(
23
),
4922
4928
(
2016
).

Supplementary Material

You do not currently have access to this content.