Immature hepatitis B virus (HBV) captures nucleotides in its capsid for reverse transcription. The nucleotides and nucleotide analog drugs, which are triphosphorylated and negatively charged in the cell, approach the capsid via diffusion and are absorbed into it. In this study, we performed a long-time molecular dynamics calculation of the entire HBV capsid containing pregenome RNA to investigate the interactions between the capsid and negatively charged substances. Electric field analysis demonstrated that negatively charged substances can approach the HBV capsid by thermal motion, avoiding spikes. The substances then migrate all over the floor of the HBV capsid. Finally, they find pores through which they can pass through the HBV capsid shell. Free energy profiles were calculated along these pores for small ions to understand their permeability through the pores. Anions (Cl) showed higher free energy barriers than cations (Na+ and K+) through all pores, and the permeation rate of Cl was eight times slower than that of K+ or Na+. Furthermore, the ions were more stable in the capsid than in the bulk water. Thus, the HBV capsid exerts ion selectivity for uptake and provides an environment for ions, such as nucleotides and nucleotide analog drugs, to be stabilized within the capsid.

1.
2.
D. M.
Knipe
and
P.
Howley
,
Fields Virology
, 6th ed. (
Lippincott Williams & Wilkins
,
2013
), Vol. II.
3.
J.
Fung
,
C.-L.
Lai
,
W.-K.
Seto
, and
M.-F.
Yuen
,
J. Antimicrob. Chemother.
66
,
2715
(
2011
).
4.
M.-F.
Yuen
,
W.-K.
Seto
,
D. H.-F.
Chow
,
K.
Tsui
,
D. K.-H.
Wong
,
V. W.-S.
Ngai
,
B. C.-Y.
Wong
,
J.
Fung
,
J. C.-H.
Yuen
, and
C.-L.
Lai
,
Antiviral Ther.
12
,
1295
(
2007
).
5.
S. J.
Hadziyannis
,
N. C.
Tassopoulos
,
E. J.
Heathcote
,
T. T.
Chang
,
G.
Kitis
,
M.
Rizzetto
,
P.
Marcellin
,
S. G.
Lim
,
Z.
Goodman
,
J.
Ma
,
C. L.
Brosgart
,
K.
Borroto–Esoda
,
S.
Arterburn
,
S. L.
Chuck
, and
Adefovir Dipivoxil 438 Study Group
,
Gastroenterology
131
,
1743
(
2006
).
6.
D. J.
Tenney
,
R. E.
Rose
,
C. J.
Baldick
,
K. A.
Pokornowski
,
B. J.
Eggers
,
J.
Fang
,
M. J.
Wichroski
,
D.
Xu
,
J.
Yang
,
R. B.
Wilber
, and
R. J.
Colonno
,
Hepatology
49
,
1503
(
2009
).
7.
J. C.-Y.
Wang
,
D. G.
Nickens
,
T. B.
Lentz
,
D. D.
Loeb
, and
A.
Zlotnick
,
Proc. Natl. Acad. Sci. U. S. A.
111
(
31
),
11329
11334
(
2014
).
8.
J. C.-Y.
Wang
,
M. S.
Dhason
, and
A.
Zlotnick
,
PLoS Pathog.
8
(
9
),
e1002919
(
2012
).
9.
A.
Zlotnick
,
B.
Venkatakrishnan
,
Z.
Tan
,
E.
Lewellyn
,
W.
Turner
, and
S.
Francis
,
Antiviral Res.
121
,
82
93
(
2015
).
10.
X.
Yu
,
L.
Jin
,
J.
Jih
,
C.
Shih
, and
Z. H.
Zhou
,
PLoS One
8
(
9
),
e69729
(
2013
).
11.
K. A.
Dryden
,
S. F.
Wieland
,
C.
Whitten-Bauer
,
J. L.
Gerin
,
F. V.
Chisari
, and
M.
Yeager
,
Mol. Cell
22
(
6
),
843
850
(
2006
).
12.
S. A.
Wynne
,
R. A.
Crowther
, and
A. G. W.
Leslie
,
Mol. Cell
3
(
6
),
771
780
(
1999
).
13.
A.
Zlotnick
,
N.
Cheng
,
J. F.
Conway
,
F. P.
Booy
,
A. C.
Steven
,
S. J.
Stahl
, and
P. T.
Wingfield
,
Biochemistry
35
(
23
),
7412
7421
(
1996
).
14.
C.
Uetrecht
,
C.
Versluis
,
N. R.
Watts
,
W. H.
Roos
,
G. J. L.
Wuite
,
P. T.
Wingfield
,
A. C.
Steven
, and
A. J. R.
Heck
,
Proc. Natl. Acad. Sci. U. S. A.
105
(
27
),
9216
9220
(
2008
).
15.
E.
Tarasova
and
D.
Nerukh
,
J. Phys. Chem. Lett.
9
,
5805
(
2018
).
16.
P. L.
Freddolino
,
A. S.
Arkhipov
,
S. B.
Larson
,
A.
McPherson
, and
K.
Schulten
,
Structure
14
(
3
),
437
449
(
2006
).
17.
D. S. D.
Larsson
,
L.
Liljas
, and
D.
van der Spoel
,
PLoS Comput. Biol.
8
(
5
),
e1002502
(
2012
).
18.
E.
Tarasova
,
V.
Farafonov
,
R.
Khayat
,
N.
Okimoto
,
T. S.
Komatsu
,
M.
Taiji
, and
D.
Nerukh
,
J. Phys. Chem. Lett.
8
,
779
(
2017
).
19.
E.
Tarasova
,
I.
Korotkin
,
V.
Farafonov
,
S.
Karabasov
, and
D.
Nerukh
,
J. Mol. Liq.
245
,
109
(
2017
).
20.
E.
Tarasova
,
V.
Farafonov
,
M.
Taiji
, and
D.
Nerukh
,
J. Mol. Liq.
265
,
585
(
2018
).
21.
V. S.
Farafonov
and
D.
Nerukh
,
Interface Focus
9
,
20180081
(
2019
).
22.
Y.
Andoh
,
N.
Yoshii
,
A.
Yamada
,
K.
Fujimoto
,
H.
Kojima
,
K.
Mizutani
,
A.
Nakagawa
,
A.
Nomoto
, and
S.
Okazaki
,
J. Chem. Phys.
141
(
16
),
165101
(
2014
).
23.
J. A.
Hadden
,
J. R.
Perilla
,
C. J.
Schlicksup
,
B.
Venkatakrishnan
,
A.
Zlotnick
, and
K.
Schulten
,
eLife
7
,
e32478
(
2018
).
24.
K.
Fujimoto
,
M.
Fukai
,
R.
Urano
,
W.
Shinoda
,
T.
Ishikawa
,
K.
Omagari
,
Y.
Tanaka
,
A.
Nakagawa
, and
S.
Okazaki
,
Pure Appl. Chem.
92
(
10
),
1585
1594
(
2020
).
25.
G.
Zhao
,
J. R.
Perilla
,
E. L.
Yufenyuy
,
X.
Meng
,
B.
Chen
,
J.
Ning
,
J.
Ahn
,
A. M.
Gronenborn
,
K.
Schulten
,
C.
Aiken
, and
P.
Zhang
,
Nature
497
(
7451
),
643
646
(
2013
).
26.
J. R.
Perilla
and
K.
Schulten
,
Nat. Commun.
8
,
15959
(
2017
).
27.
F.
Pastor
,
C.
Herrscher
,
R.
Patient
,
S.
Eymieux
,
A.
Moreau
,
J.
Burlaud-Gaillard
,
F.
Seigneuret
,
H.
de Rocquigny
,
P.
Roingeard
, and
C.
Hourioux
,
Sci. Rep.
9
(
1
),
16178
(
2019
).
28.
Q.
Zhao
,
Z.
Hu
,
J.
Cheng
,
S.
Wu
,
Y.
Luo
,
J.
Chang
,
J.
Hu
, and
J.-T.
Guo
,
J. Virol.
92
(
13
),
e02139
(
2018
).
29.
L.
Selzer
,
R.
Kant
,
J. C.-Y.
Wang
,
B.
Bothner
, and
A.
Zlotnick
,
J. Biol. Chem.
290
(
47
),
28584
28593
(
2015
).
30.
N.
Leontis
,
E.
Westhof
, and
J. M.
Bujnicki
,
RNA 3D Structure Analysis and Prediction
(
Springer
,
2012
).
31.
S. J.
Flint
,
L. W.
Enquist
,
V. R.
Racaniello
, and
A. M.
Skalka
,
Principles of Virology
, 2nd ed. (
American Society for Microbiology
,
2003
).
32.
A.
Morozenko
,
I. V.
Leontyev
, and
A. A.
Stuchebrukhov
,
J. Chem. Theory Comput.
10
(
10
),
4618
4623
(
2014
).
33.
J.
Gumbart
,
L. G.
Trabuco
,
E.
Schreiner
,
E.
Villa
, and
K.
Schulten
,
Structure
17
(
11
),
1453
1461
(
2009
).
34.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
(
1
),
33
38
(
1996
).
35.
M. N.
Ucisik
,
P. C.
Bevilacqua
, and
S.
Hammes-Schiffer
,
Biochemistry
55
(
27
),
3834
3846
(
2016
).
36.
J. C.
Bowman
,
T. K.
Lenz
,
N. V.
Hud
, and
L. D.
Williams
,
Curr. Opin. Struct. Biol.
22
(
3
),
262
272
(
2012
).
37.
B.
Alberts
,
A.
Johnson
,
J.
Lewis
,
D.
Morgan
,
M.
Raff
, and
K.
Roberts
,
Molecular Biology of the Cell
, 6th ed. (
W. W. Norton
,
2014
).
38.
W. G.
Hoover
,
Phys. Rev. A
31
(
3
),
1695
(
1985
).
39.
H. C.
Andersen
,
J. Chem. Phys.
72
(
4
),
2384
2393
(
1980
).
40.
R. B.
Best
,
X.
Zhu
,
J.
Shim
,
P. E. M.
Lopes
,
J.
Mittal
,
M.
Feig
, and
A. D.
Mackerell
,
J. Chem. Theory Comput.
8
(
9
),
3257
3273
(
2012
).
41.
E. J.
Denning
,
U. D.
Priyakumar
,
L.
Nilsson
, and
A. D.
Mackerell
,
J. Comput. Chem.
32
(
9
),
1929
1943
(
2011
).
42.
D.
Beglov
and
B.
Roux
,
J. Chem. Phys.
100
(
12
),
9050
9063
(
1994
).
43.
A. D.
Mackerell
, Jr.
,
D.
Bashford
,
M.
Bellott
,
R. L.
Dunbrack
, Jr.
,
J. D.
Evanseck
,
M. J.
Field
,
S.
Fischer
,
J.
Gao
,
H.
Guo
,
S.
Ha
,
D.
Joseph-McCarthy
,
L.
Kuchnir
,
K.
Kuczera
,
F. T. K.
Lau
,
C.
Mattos
,
S.
Michnick
,
T.
Ngo
,
D. T.
Nguyen
,
B.
Prodhom
,
W. E.
Reiher
,
B.
Roux
,
M.
Schlenkrich
,
J. C.
Smith
,
R.
Stote
,
J.
Straub
,
M.
Watanabe
,
J.
Wiórkiewicz-Kuczera
,
D.
Yin
, and
M.
Karplus
, Jr.
,
J. Phys. Chem. B
102
(
18
),
3586
3616
(
1998
).
44.
Y.
Andoh
,
N.
Yoshii
,
K.
Fujimoto
,
K.
Mizutani
,
H.
Kojima
,
A.
Yamada
,
S.
Okazaki
,
K.
Kawaguchi
,
H.
Nagao
,
K.
Iwahashi
,
F.
Mizutani
,
K.
Minami
,
S.
Ichikawa
,
H.
Komatsu
,
S.
Ishizuki
,
Y.
Takeda
, and
M.
Fukushima
,
J. Chem. Theory Comput.
9
(
7
),
3201
3209
(
2013
).
45.
J. F.
Greengard
,
The Rapid Evaluation of Potential Fields in Particle Systems
(
MIT Press
,
Cambridge
,
1988
).
46.
G. J.
Martyna
,
M. E.
Tuckerman
,
D. J.
Tobias
, and
M. L.
Klein
,
Mol. Phys.
87
(
5
),
1117
1157
(
1996
).
47.
G. J.
Martyna
,
D. J.
Tobias
, and
M. L.
Klein
,
J. Chem. Phys.
101
(
5
),
4177
4189
(
1994
).
48.
A.
Yonezawa
,
T.
Watanabe
,
M.
Yokokawa
,
M.
Sato
, and
K.
Hirao
, in
Proceedings of International Conference for High Performance Computing, Networking, Storage, and Analysis
(
Association for Computing Machinery (ACM)
,
Washington, DC
,
2011
), pp.
1
8
.
49.
C. L.
Brooks
,
M.
Karplus
, and
B. M.
Pettitt
,
Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics
(
John Wiley & Sons
,
NY
,
1988
).

Supplementary Material

You do not currently have access to this content.