Modeling linear absorption spectra of solvated chromophores is highly challenging as contributions are present both from coupling of the electronic states to nuclear vibrations and from solute–solvent interactions. In systems where excited states intersect in the Condon region, significant non-adiabatic contributions to absorption line shapes can also be observed. Here, we introduce a robust approach to model linear absorption spectra accounting for both environmental and non-adiabatic effects from first principles. This model parameterizes a linear vibronic coupling (LVC) Hamiltonian directly from energy gap fluctuations calculated along molecular dynamics (MD) trajectories of the chromophore in solution, accounting for both anharmonicity in the potential and direct solute–solvent interactions. The resulting system dynamics described by the LVC Hamiltonian are solved exactly using the thermalized time-evolving density operator with orthogonal polynomials algorithm (T-TEDOPA). The approach is applied to the linear absorption spectrum of methylene blue in water. We show that the strong shoulder in the experimental spectrum is caused by vibrationally driven population transfer between the bright S1 and the dark S2 states. The treatment of the solvent environment is one of many factors that strongly influence the population transfer and line shape; accurate modeling can only be achieved through the use of explicit quantum mechanical solvation. The efficiency of T-TEDOPA, combined with LVC Hamiltonian parameterizations from MD, leads to an attractive method for describing a large variety of systems in complex environments from first principles.

1.
F. A.
Zucca
,
J.
Segura-Aguilar
,
E.
Ferrari
,
P.
Muñoz
,
I.
Paris
,
D.
Sulzer
,
T.
Sarna
,
L.
Casella
, and
L.
Zecca
, “
Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease
,”
Prog. Neurobiol.
155
,
96
119
(
2017
).
2.
M.
Rivera-Torrente
,
L. D.
Mandemaker
,
M.
Filez
,
G.
Delen
,
B.
Seoane
,
F.
Meirer
, and
B. M.
Weckhuysen
, “
Spectroscopy, microscopy, diffraction and scattering of archetypal MOFs: Formation, metal sites in catalysis and thin films
,”
Chem. Soc. Rev.
49
,
6694
6732
(
2020
).
3.
A.
Marini
,
A.
Muñoz-Losa
,
A.
Biancardi
, and
B.
Mennucci
, “
What is solvatochromism?
,”
J. Phys. Chem. B
114
,
17128
17135
(
2010
).
4.
M. R.
Provorse
,
T.
Peev
,
C.
Xiong
, and
C. M.
Isborn
, “
Convergence of excitation energies in mixed quantum and classical solvent: Comparison of continuum and point charge models
,”
J. Phys. Chem. B
120
,
12148
12159
(
2016
).
5.
T. J.
Zuehlsdorff
,
H.
Hong
,
L.
Shi
, and
C. M.
Isborn
, “
Influence of electronic polarization on the spectral density
,”
J. Phys. Chem. B
124
,
531
543
(
2020
).
6.
C.
Puzzarini
,
J.
Bloino
,
N.
Tasinato
, and
V.
Barone
, “
Accuracy and interpretability: The devil and the holy grail. New routes across old boundaries in computational spectroscopy
,”
Chem. Rev.
119
,
8131
8191
(
2019
).
7.
T. J.
Zuehlsdorff
,
S. V.
Shedge
,
S.-Y.
Lu
,
H.
Hong
,
V. P.
Aguirre
,
L.
Shi
, and
C. M.
Isborn
, “
Vibronic and environmental effects in simulations of optical spectroscopy
,”
Annu. Rev. Phys. Chem.
72
,
165
188
(
2021
).
8.
C.
Zener
, “
Non-adiabatic crossing of energy levels
,”
Proc. R. Soc. London, Ser. A
33
,
696
702
(
1932
).
9.
H. D.
Meyer
and
W. H.
Miller
, “
A classical analog for electronic degrees of freedom in nonadiabatic collision processes
,”
J. Chem. Phys.
70
,
3214
3223
(
1979
).
10.
M.
Baer
, “
Introduction to the theory of electronic non-adiabatic coupling terms in molecular systems
,”
Phys. Rep.
358
,
75
142
(
2002
).
11.
B. F. E.
Curchod
and
T. J.
Martínez
, “
Ab initio nonadiabatic quantum molecular dynamics
,”
Chem. Rev.
118
,
3305
3336
(
2018
).
12.
I.
Tavernelli
,
B. F. E.
Curchod
, and
U.
Rothlisberger
, “
Nonadiabatic molecular dynamics with solvent effects: A LR-TDDFT QM/MM study of ruthenium (II) tris (bipyridine) in water
,”
Chem. Phys.
391
,
101
109
(
2011
).
13.
A.
Charaf-Eddin
,
A.
Planchat
,
B.
Mennucci
,
C.
Adamo
, and
D.
Jacquemin
, “
Choosing a functional for computing absorption and fluorescence band shapes with TD-DFT
,”
J. Chem. Theory Comput.
9
,
2749
2760
(
2013
).
14.
E.
Stendardo
,
F.
Avila Ferrer
,
F.
Santoro
, and
R.
Improta
, “
The absorption and emission spectra in solution of oligothiophene-based push–pull biomarkers: A PCM/TD-DFT vibronic study
,”
Theor. Chem. Acc.
135
,
150
(
2016
).
15.
E. V.
Doktorov
,
I. A.
Malkin
, and
V. I.
Man’ko
, “
Dynamical symmetry of vibronic transitions in polyatomic molecules and the Franck-Condon principle
,”
J. Mol. Spectrosc.
56
,
1
20
(
1975
).
16.
F.
Santoro
,
A.
Lami
,
R.
Improta
,
J.
Bloino
, and
V.
Barone
, “
Effective method for the computation of optical spectra of large molecules at finite temperature including the Duschinsky and Herzberg–Teller effect: The Qx band of porphyrin as a case study
,”
J. Chem. Phys.
128
,
224311
(
2008
).
17.
A.
Baiardi
,
J.
Bloino
, and
V.
Barone
, “
General time dependent approach to vibronic spectroscopy including Franck–Condon, Herzberg–Teller, and Duschinky effects
,”
J. Chem. Theory Comput.
9
,
4097
4115
(
2013
).
18.
B.
de Souza
,
F.
Neese
, and
R.
Izsák
, “
On the theoretical prediction of fluorescence rates from first principles using the path integral approach
,”
J. Chem. Phys.
148
,
034104
(
2018
).
19.
R.
Berger
,
C.
Fischer
, and
M.
Klessinger
, “
Calculation of the vibronic fine structure in electronic spectra at higher temperatures. 1. Benzene and pyrazine
,”
J. Phys. Chem. A
102
,
7157
7167
(
1998
).
20.
F. J. A.
Ferrer
,
R.
Improta
,
F.
Santoro
, and
V.
Barone
, “
Computing the inhomogeneous broadening of electronic transitions in solution: A first-principle quantum mechanical approach
,”
Phys. Chem. Chem. Phys.
13
,
17007
17012
(
2011
).
21.
F. J.
Avila Ferrer
,
J.
Cerezo
,
J.
Soto
,
R.
Improta
, and
F.
Santoro
, “
First-principle computation of absorption and fluorescence spectra in solution accounting for vibronic structure, temperature effects and solvent inhomogenous broadening
,”
Comput. Theor. Chem.
1040–1041
,
328
337
(
2014
), part of the Special Issue: Excited states: From isolated molecules to complex environments.
22.
J.
Cerezo
,
F. J.
Avila Ferrer
, and
F.
Santoro
, “
Disentangling vibronic and solvent broadening effects in the absorption spectra of coumarin derivatives for dye sensitized solar cells
,”
Phys. Chem. Chem. Phys.
17
,
11401
11411
(
2015
).
23.
T. J.
Zuehlsdorff
and
C. M.
Isborn
, “
Combining the ensemble and Franck-Condon approaches for calculating spectral shapes of molecules in solution
,”
J. Chem. Phys.
148
,
024110
(
2018
).
24.
T. J.
Zuehlsdorff
,
J. A.
Napoli
,
J. M.
Milanese
,
T. E.
Markland
, and
C. M.
Isborn
, “
Unraveling electronic absorption spectra using nuclear quantum effects: Photoactive yellow protein and green fluorescent protein chromophores in water
,”
J. Chem. Phys.
149
,
024107
(
2018
).
25.
S. V.
Shedge
,
T. J.
Zuehlsdorff
,
A.
Khanna
,
S.
Conley
, and
C. M.
Isborn
, “
Explicit environmental and vibronic effects in simulations of linear and nonlinear optical spectroscopy
,”
J. Chem. Phys.
154
,
084116
(
2021
).
26.
W.
Domcke
and
D. R.
Yarkony
, “
Role of conical intersections in molecular spectroscopy and photoinduced chemical dynamics
,”
Annu. Rev. Phys. Chem.
63
,
325
352
(
2012
).
27.
G.
Orlandi
and
W.
Siebrand
, “
Theory of vibronic intensity borrowing. Comparison of Herzberg-Teller and Born-Oppenheimer coupling
,”
J. Chem. Phys.
58
,
4513
4523
(
1973
).
28.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
, “
Multimode molecular dynamics beyond the Born-Oppenheimer approximation
,” in
Advances in Chemical Physics
, edited by
I.
Prigogine
and
S. A.
Rice
(
Wiley
,
1984
), Vol. LVII, pp.
59
246
.
29.
W.
Domcke
,
H.
Köppel
, and
L. S.
Cederbaum
, “
Spectroscopic effects of conical intersections of molecular potential energy surfaces
,”
Mol. Phys.
43
,
851
875
(
1981
).
30.
G. A.
Worth
,
H. D.
Meyer
, and
L. S.
Cederbaum
, “
The effect of a model environment on the S2 absorption spectrum of pyrazine: A wave packet study treating all 24 vibrational modes
,”
J. Chem. Phys.
105
,
4412
4426
(
1996
).
31.
S. P.
Neville
,
A.
Stolow
, and
M. S.
Schuurman
, “
Vacuum ultraviolet excited state dynamics of the smallest ring, cyclopropane. I. A reinterpretation of the electronic spectrum and the effect of intensity borrowing
,”
J. Chem. Phys.
149
,
144310
(
2018
).
32.
D. R.
Yarkony
, “
Nonadiabatic quantum chemistry-past, present, and future
,”
Chem. Rev.
112
,
481
498
(
2012
).
33.
H. D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
, “
The multi-configurational time-dependent Hartree approach
,”
Chem. Phys. Lett.
165
,
73
78
(
1990
).
34.
F.
Gatti
and
G. A.
Worth
, in
Multidimensional Quantum Dynamics: MCTDH Theory and Applications
, edited by
H. D.
Meyer
(
Wiley VCH
,
2009
).
35.
M.
Yaghoubi Jouybari
,
Y.
Liu
,
R.
Improta
, and
F.
Santoro
, “
Ultrafast dynamics of the two lowest bright excited states of cytosine and 1-methylcytosine: A quantum dynamical study
,”
J. Chem. Theory Comput.
16
,
5792
5808
(
2020
).
36.
D.
Aranda
and
F.
Santoro
, “
Vibronic spectra of π-conjugated systems with a multitude of coupled states: A protocol based on linear vibronic coupling models and quantum dynamics tested on hexahelicene
,”
J. Chem. Theory Comput.
17
,
1691
1700
(
2021
).
37.
J. A.
Green
,
M.
Yaghoubi Jouybari
,
D.
Aranda
,
R.
Improta
, and
F.
Santoro
, “
Nonadiabatic absorption spectra and ultrafast dynamics of DNA and RNA photoexcited nucleobases
,”
Molecules
26
,
1743
(
2021
).
38.
H.
Wang
and
M.
Thoss
, “
Multilayer formulation of the multiconfiguration time-dependent Hartree theory
,”
J. Chem. Phys.
119
,
1289
1299
(
2003
).
39.
M.
Schröter
,
S. D.
Ivanov
,
J.
Schulze
,
S. P.
Polyutov
,
Y.
Yan
,
T.
Pullerits
, and
O.
Kühn
, “
Exciton–vibrational coupling in the dynamics and spectroscopy of Frenkel excitons in molecular aggregates
,”
Phys. Rep.
567
,
1
78
(
2015
).
40.
F. A.
Schröder
,
D. H.
Turban
,
A. J.
Musser
,
N. D.
Hine
, and
A. W.
Chin
, “
Tensor network simulation of multi-environmental open quantum dynamics via machine learning and entanglement renormalisation
,”
Nat. Commun.
10
,
1062
(
2019
).
41.
J.
Prior
,
A. W.
Chin
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Efficient simulation of strong system-environment interactions
,”
Phys. Rev. Lett.
105
,
050404
(
2010
).
42.
A. W.
Chin
,
Á.
Rivas
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials
,”
J. Math. Phys.
51
,
092109
(
2010
).
43.
A.
Chin
,
J.
Prior
,
R.
Rosenbach
,
F.
Caycedo-Soler
,
S. F.
Huelga
, and
M. B.
Plenio
, “
The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes
,”
Nat. Phys.
9
,
113
118
(
2013
).
44.
U.
Schollwöck
, “
The density-matrix renormalization group in the age of matrix product states
,”
Ann. Phys.
326
,
96
192
(
2011
).
45.
S.
Mainali
,
F.
Gatti
,
D.
Iouchtchenko
,
P.-N.
Roy
, and
H.-D.
Meyer
, “
Comparison of the multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) method and the density matrix renormalization group (DMRG) for ground state properties of linear rotor chains
,”
J. Chem. Phys.
154
,
174106
(
2021
).
46.
C.
Schnedermann
,
A. M.
Alvertis
,
T.
Wende
,
S.
Lukman
,
J.
Feng
,
F. A.
Schröder
,
D. H.
Turban
,
J.
Wu
,
N. D.
Hine
,
N. C.
Greenham
 et al., “
A molecular movie of ultrafast singlet fission
,”
Nat. Commun.
10
,
4207
(
2019
).
47.
D.
Tamascelli
,
A.
Smirne
,
J.
Lim
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Efficient simulation of finite-temperature open quantum systems
,”
Phys. Rev. Lett.
123
,
090402
(
2019
).
48.
A. J.
Dunnett
and
A. W.
Chin
, “
Matrix product state simulations of non-equilibrium steady states and transient heat flows in the two-bath spin-boson model at finite temperatures
,”
Entropy
23
,
77
(
2021
).
49.
A. J.
Dunnett
and
A. W.
Chin
, “
Simulating quantum vibronic dynamics at finite temperatures with many body wave functions at 0 K
,”
Front. Chem.
8
,
600731
(
2021
).
50.
O. V.
Ovchinnikov
,
A. V.
Evtukhova
,
T. S.
Kondratenko
,
M. S.
Smirnov
,
V. Y.
Khokhlov
, and
O. V.
Erina
, “
Manifestation of intermolecular interactions in FTIR spectra of methylene blue molecules
,”
Vib. Spectrosc.
86
,
181
189
(
2016
).
51.
D.
Heger
,
J.
Jirkovský
, and
P.
Klán
, “
Aggregation of methylene blue in frozen aqueous solutions studied by absorption spectroscopy
,”
J. Phys. Chem. A
109
,
6702
6709
(
2005
).
52.
G. A.
Shahinyan
,
A. Y.
Amirbekyan
, and
S. A.
Markarian
, “
Photophysical properties of methylene blue in water and in aqueous solutions of dimethylsulfoxide
,”
Spectrochim. Acta, Part A
217
,
170
175
(
2019
).
53.
J. C.
Dean
,
S.
Rafiq
,
D. G.
Oblinsky
,
E.
Cassette
,
C. C.
Jumper
, and
G. D.
Scholes
, “
Broadband transient absorption and two-dimensional electronic spectroscopy of methylene blue
,”
J. Phys. Chem. A
119
,
9098
9108
(
2015
).
54.
T. B.
de Queiroz
,
E. R.
de Figueroa
,
M. D.
Coutinho-Neto
,
C. D.
Maciel
,
E.
Tapavicza
,
Z.
Hashemi
, and
L.
Leppert
, “
First principles theoretical spectroscopy of methylene blue: Between limitations of time-dependent density functional theory approximations and its realistic description in the solvent
,”
J. Chem. Phys.
154
,
044106
(
2021
).
55.
M. G.
Mavros
,
D.
Hait
, and
T.
Van Voorhis
, “
Condensed phase electron transfer beyond the Condon approximation
,”
J. Chem. Phys.
145
,
214105
(
2016
).
56.
T. J.
Zuehlsdorff
,
A.
Montoya-Castillo
,
J. A.
Napoli
,
T. E.
Markland
, and
C. M.
Isborn
, “
Optical spectra in the condensed phase: Capturing anharmonic and vibronic features using dynamic and static approaches
,”
J. Chem. Phys.
151
,
074111
(
2019
).
57.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
).
58.
M.
Cho
, “
Coherent two-dimensional optical spectroscopy
,”
Chem. Rev.
108
,
1331
1418
(
2008
).
59.
F.
Duschinsky
,
Acta Physicochim. URSS
7
,
411
(
1937
).
60.
J. S.
Bader
and
B. J.
Berne
, “
Quantum and classical relaxation rates from classical simulations
,”
J. Chem. Phys.
100
,
8359
(
1994
).
61.
S. A.
Egorov
,
K. F.
Everitt
, and
J. L.
Skinner
, “
Quantum dynamics and vibrational relaxation
,”
J. Phys. Chem. A
103
,
9494
9499
(
1999
).
62.
H.
Kim
and
P. J.
Rossky
, “
Evaluation of quantum correlation functions from classical data
,”
J. Phys. Chem. B
106
,
8240
(
2002
).
63.
S.
Valleau
,
A.
Eisfeld
, and
A.
Aspuru-Guzik
, “
On the alternatives for bath correlators and spectral densities from mixed quantum-classical simulations
,”
J. Chem. Phys.
137
,
224103
(
2012
).
64.
I. R.
Craig
and
D. E.
Manolopoulos
, “
Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics
,”
J. Chem. Phys.
121
,
3368
(
2004
).
65.
R.
Ramirez
,
T.
Lopez-Ciudad
,
P.
Kumar P
, and
D.
Marx
, “
Quantum corrections to classical time-correlation functions: Hydrogen bonding and anharmonic floppy modes
,”
J. Chem. Phys.
121
,
3973
(
2004
).
66.
T.
Pacher
,
L. S.
Cederbaum
, and
H.
Köppel
, “
Approximately diabatic states from block diagonalization of the electronic Hamiltonian
,”
J. Chem. Phys.
89
,
7367
7381
(
1988
).
67.
J. E.
Subotnik
,
S.
Yeganeh
,
R. J.
Cave
, and
M. A.
Ratner
, “
Constructing diabatic states from adiabatic states: Extending generalized Mulliken–Hush to multiple charge centers with Boys localization
,”
J. Chem. Phys.
129
,
244101
(
2008
).
68.
T.
Van Voorhis
,
T.
Kowalczyk
,
B.
Kaduk
,
L.-P.
Wang
,
C.-L.
Cheng
, and
Q.
Wu
, “
The diabatic picture of electron transfer, reaction barriers, and molecular dynamics
,”
Annu. Rev. Phys. Chem.
61
,
149
170
(
2010
).
69.
C. E.
Hoyer
,
X.
Xu
,
D.
Ma
,
L.
Gagliardi
, and
D. G.
Truhlar
, “
Diabatization based on the dipole and quadrupole: The DQ method
,”
J. Chem. Phys.
141
,
114104
(
2014
).
70.
G. R.
Medders
,
E. C.
Alguire
,
A.
Jain
, and
J. E.
Subotnik
, “
Ultrafast electronic relaxation through a conical intersection: Nonadiabatic dynamics disentangled through an oscillator strength-based diabatization framework
,”
J. Phys. Chem. A
121
,
1425
1434
(
2017
).
71.
M. F.
Gelin
and
R.
Borrelli
, “
Simulation of nonlinear femtosecond signals at finite temperature via a thermo field dynamics-tensor train method: General theory and application to time-and frequency-resolved fluorescence of the Fenna–Matthews–Olson complex
,”
J. Chem. Theory Comput.
17
,
4316
(
2021
).
72.
T. J.
Zuehlsdorff
,
H.
Hong
,
L.
Shi
, and
C. M.
Isborn
, “
Nonlinear spectroscopy in the condensed phase: The role of Duschinsky rotations and third order cumulant contributions
,”
J. Chem. Phys.
153
,
044127
(
2020
).
73.
P.
Eastman
,
J.
Swails
,
J. D.
Chodera
,
R. T.
McGibbon
,
Y.
Zhao
,
K. A.
Beauchamp
,
L.-P.
Wang
,
A. C.
Simmonett
,
M. P.
Harrigan
,
C. D.
Stern
,
R. P.
Wiewiora
,
B. R.
Brooks
, and
V. S.
Pande
, “
OpenMM 7: Rapid development of high performance algorithms for molecular dynamics
,”
PLoS Comput. Biol.
13
,
e1005659
(
2017
).
74.
W. L.
Jorgensen
,
J.
Chandrasekhar
, and
J. D.
Madura
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
(
1983
).
75.
J. T.
Horton
,
A. E. A.
Allen
,
L. S.
Dodda
, and
D. J.
Cole
, “
QUBEKit: Automating the derivation of force field parameters from quantum mechanics
,”
J. Chem. Inf. Model.
59
,
1366
1381
(
2019
).
76.
I. S.
Ufimtsev
and
T. J.
Martinez
, “
Quantum chemistry on graphical processing units. 3. Analytical energy gradients and first principles molecular dynamics
,”
J. Chem. Theory Comput.
5
,
2619
2628
(
2009
).
77.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
, “
A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP)
,”
Chem. Phys. Lett.
393
,
51
57
(
2004
).
78.
C. M.
Isborn
,
N.
Luehr
,
I. S.
Ufimtsev
, and
T. J.
Martínez
, “
Excited-state electronic structure with configuration interaction singles and Tamm–Dancoff time-dependent density functional theory on graphical processing units
,”
J. Chem. Theory Comput.
7
,
1814
1823
(
2011
).
79.
P. J.
Stephen
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
, “
Ab initio calculation of vibrational absorption
,”
J. Phys. Chem.
98
,
11623
11627
(
1994
).
80.
M. C.
Zwier
,
J. M.
Shorb
, and
B. P.
Krueger
, “
Hybrid molecular dynamics-quantum mechanics simulations of solute spectral properties in the condensed phase: Evaluation of simulation parameters
,”
J. Comput. Chem.
28
,
1572
1581
(
2007
).
81.
A. M.
Rosnik
and
C.
Curutchet
, “
Theoretical characterization of the spectral density of the water-soluble chlorophyll-binding protein from combined quantum mechanics/molecular mechanics molecular dynamics simulations
,”
J. Chem. Theory Comput.
11
,
5826
5837
(
2015
).
82.
S.
Chandrasekaran
,
M.
Aghtar
,
S.
Valleau
,
A.
Aspuru-Guzik
, and
U.
Kleinekathöfer
, “
Influence of force fields and qauntum chemistry approach on spectral densities of BChl a in solution and in FMO proteins
,”
J. Phys. Chem. B
119
,
9995
10004
(
2015
).
83.
C. W.
Kim
,
J. W.
Park
, and
Y. M.
Rhee
, “
Effect of chromophore potential model on the description of exciton–phonon interactions
,”
J. Phys. Chem. Lett.
6
,
2875
2880
(
2015
).
84.
M. K.
Lee
and
D. F.
Coker
, “
Modeling electronic-nuclear interactions for excitation energy transfer processes in light-harvesting complexes
,”
J. Phys. Chem. Lett.
7
,
3171
3178
(
2016
).
85.
O.
Andreussi
,
I. G.
Prandi
,
M.
Canpetella
,
G.
Prampolini
, and
B.
Mennucci
, “
Classical force fields tailored for QM applications: Is it really a feasible strategy?
,”
J. Chem. Theory Comput.
13
,
4636
4648
(
2017
).
86.
M. S.
Chen
,
T. J.
Zuehlsdorff
,
T.
Morawietz
,
C. M.
Isborn
, and
T. E.
Markland
, “
Exploiting machine learning to efficiently predict multidimensional optical spectra in complex environments
,”
J. Phys. Chem. Lett.
11
,
7559
7568
(
2020
).
87.
T. J.
Zuehlsdorff
, Molspeckpy: Spectroscopy python code, available on github: https://github.com/tjz21/spectroscopy_python_code,
2021
.
88.
J.
Haegeman
,
C.
Lubich
,
I.
Oseledets
,
B.
Vandereycken
, and
F.
Verstraete
, “
Unifying time evolution and optimization with matrix product states
,”
Phys. Rev. B
94
,
165116
(
2016
).
89.
B.
Kloss
,
Y. B.
Lev
, and
D.
Reichman
, “
Time-dependent variational principle in matrix-product state manifolds: Pitfalls and potential
,”
Phys. Rev. B
97
,
024307
(
2018
).
90.
A.
Dunnett
, Mpsdynamics,
2021
.
91.
W.
Gautschi
, “
Algorithm 726: ORTHPOL–a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules
,”
ACM Trans. Math. Software
20
,
21
62
(
1994
).
92.
M.
Woods
,
M.
Cramer
, and
M.
Plenio
, “
Simulating bosonic baths with error bars
,”
Phys. Rev. Lett.
115
,
130401
(
2015
).
93.
A.
Fernández-Pérez
,
T.
Valdés-Solís
, and
G.
Marbán
, “
Visible light spectroscopic analysis of methylene blue in water; the resonance virtual equilibrium hypothesis
,”
Dyes Pigm.
161
,
448
456
(
2019
).
94.
F. J.
Avila Ferrer
and
F.
Santoro
, “
Comparison of vertical and adiabatic harmonic approaches for the calculation of the vibrational structure of electronic spectra
,”
Phys. Chem. Chem. Phys.
14
,
13549
13563
(
2012
).

Supplementary Material

You do not currently have access to this content.