Several pool-based active learning (AL) algorithms were employed to model potential-energy surfaces (PESs) with a minimum number of electronic structure calculations. Theoretical and empirical results suggest that superior strategies can be obtained by sampling molecular structures corresponding to large uncertainties in their predictions while at the same time not deviating much from the true distribution of the data. To model PESs in an AL framework, we propose to use a regression version of stochastic query by forest, a hybrid method that samples points corresponding to large uncertainties while avoiding collecting too many points from sparse regions of space. The algorithm is implemented with decision trees that come with relatively small computational costs. We empirically show that this algorithm requires around half the data to converge to the same accuracy in comparison to the uncertainty-based query-by-committee algorithm. Moreover, the algorithm is fully automatic and does not require any prior knowledge of the PES. Simulations on a 6D PES of pyrrole(H2O) show that <15 000 configurations are enough to build a PES with a generalization error of 16 cm−1, whereas the final model with around 50 000 configurations has a generalization error of 11 cm−1.

1.
K.
Liu
, “
Quantum dynamical resonances in chemical reactions: From A + BC to polyatomic systems
,”
Adv. Chem. Phys.
149
,
1
46
(
2012
).
2.
A. G.
Suits
, “
Roaming reactions and dynamics in the van der Waals region
,”
Annu. Rev. Phys. Chem.
71
,
77
100
(
2020
).
3.
M.
Colombo
,
D.
Rau
, and
V.
Parsegian
, “
Protein solvation in allosteric regulation: A water effect on hemoglobin
,”
Science
256
,
655
659
(
1992
).
4.
T. S.
Zwier
, “
The spectroscopy of solvation in hydrogen-bonded aromatic clusters
,”
Annu. Rev. Phys. Chem.
47
,
205
241
(
1996
).
5.
T. M.
Korter
,
D. W.
Pratt
, and
J.
Küpper
, “
Indole-H2O in the gas phase. Structures, barriers to internal motion, and S1 ← S0 transition moment orientation. Solvent reorganization in the electronically excited state
,”
J. Phys. Chem. A
102
,
7211
7216
(
1998
).
6.
I. V.
Hertel
and
W.
Radloff
, “
Ultrafast dynamics in isolated molecules and molecular clusters
,”
Rep. Prog. Phys.
69
,
1897
2003
(
2006
).
7.
C.
Kang
and
D. W.
Pratt
, “
Structures, charge distributions, and dynamical properties of weakly bound complexes of aromatic molecules in their ground and electronically excited states
,”
Int. Rev. Phys. Chem.
24
,
1
36
(
2007
).
8.
A. K.
Samanta
,
Y.
Wang
,
J. S.
Mancini
,
J. M.
Bowman
, and
H.
Reisler
, “
Energetics and predissociation dynamics of small water, HCl, and mixed HCl-water clusters
,”
Chem. Rev.
116
,
4913
4936
(
2016
).
9.
M.
Johny
,
C. A.
Schouder
,
A.
Al-Refaie
,
L.
He
,
J.
Wiese
,
H.
Stapelfeldt
,
S.
Trippel
, and
J.
Küpper
, “
Molecular sunscreen: Water protects pyrrole from radiation damage
” (submitted); arXiv:2010.00453 [physics].
10.
J.
Onvlee
,
S.
Trippel
, and
J.
Küpper
, “
Ultrafast light-induced dynamics in solvated biomolecules: The indole chromophore with water
” (unpublished); arXiv:2103.07171 [physics].
11.
O.
Akin-Ojo
and
K.
Szalewicz
, “
Potential energy surface and second virial coefficient of methane-water from ab initio calculations
,”
J. Chem. Phys.
123
,
134311
(
2005
).
12.
M. P.
Metz
,
K.
Szalewicz
,
J.
Sarka
,
R.
Tóbiás
,
A. G.
Császár
, and
E.
Mátyus
, “
Molecular dimers of methane clathrates: Ab initio potential energy surfaces and variational vibrational states
,”
Phys. Chem. Chem. Phys.
21
,
13504
13525
(
2019
).
13.
Q.
Ma
and
H.-J.
Werner
, “
Accurate intermolecular interaction energies using explicitly correlated local coupled cluster methods [PNO-LCCSD(T)-F12]
,”
J. Chem. Theory Comput.
15
,
1044
1052
(
2019
).
14.
M. P.
Metz
and
K.
Szalewicz
, “
Automatic generation of flexible-monomer intermolecular potential energy surfaces
,”
J. Chem. Theory Comput.
16
,
2317
2339
(
2020
).
15.
S. N.
Vogels
,
T.
Karman
,
J.
Kłos
,
M.
Besemer
,
J.
Onvlee
,
A.
van der Avoird
,
G. C.
Groenenboom
, and
S. Y. T.
van de Meerakker
, “
Scattering resonances in bimolecular collisions between NO radicals and H2 challenge the theoretical gold standard
,”
Nat. Chem.
10
,
435
440
(
2018
).
16.
B.
Brauer
,
M. K.
Kesharwani
,
S.
Kozuch
, and
J. M. L.
Martin
, “
The S66 × 8 benchmark for noncovalent interactions revisited: Explicitly correlated ab initio methods and density functional theory
,”
Phys. Chem. Chem. Phys.
18
,
20905
20925
(
2016
).
17.
J.
Behler
, “
Perspective: Machine learning potentials for atomistic simulations
,”
J. Chem. Phys.
145
,
170901
(
2016
).
18.
K.
Hansen
,
G.
Montavon
,
F.
Biegler
,
S.
Fazli
,
M.
Rupp
,
M.
Scheffler
,
O. A.
von Lilienfeld
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
Assessment and validation of machine learning methods for predicting molecular atomization energies
,”
J. Chem. Theory Comput.
9
,
3404
3419
(
2013
).
19.
S.
Manzhos
and
T.
Carrington
, “
Neural network potential energy surfaces for small molecules and reactions
,”
Chem. Rev.
121
,
10187
(
2021
).
20.
A.
Blum
,
J.
Hopcroft
, and
R.
Kannan
,
Foundations of Data Science
(
Cambridge University Press
,
2020
).
21.
M.
Lotz
, “
Mathematics of machine learning
,”
2018
, lecture notes; accessed 30 March 2021.
22.
Y.
Yao
, “
A mathematical introduction to data science
,”
2019
, lecture notes; accessed 30 March 2021.
23.
S.
Shalev-Shwartz
and
S.
Ben-David
,
Understanding Machine Learning: From Theory to Algorithms
(
Cambridge University Press
,
2014
).
24.
I.
Goodfellow
,
Y.
Bengio
,
A.
Courville
, and
Y.
Bengio
,
Deep Learning
(
MIT Press
,
2016
), Vol. 1.
25.
X.
Wang
,
P. L.
Houston
, and
J. M.
Bowman
, “
A new (multi-reference configuration interaction) potential energy surface for H2CO and preliminary studies of roaming
,”
Philos. Trans. R. Soc., A
375
,
20160194
(
2017
).
26.
B. J.
Braams
and
J. M.
Bowman
, “
Permutationally invariant potential energy surfaces in high dimensionality
,”
Int. Rev. Phys. Chem.
28
,
577
606
(
2009
).
27.
Z.
Xie
and
J. M.
Bowman
, “
Permutationally invariant polynomial basis for molecular energy surface fitting via monomial symmetrization
,”
J. Chem. Theory Comput.
6
,
26
34
(
2010
).
28.
C.
Qu
,
Q.
Yu
, and
J. M.
Bowman
, “
Permutationally invariant potential energy surfaces
,”
Annu. Rev. Phys. Chem.
69
,
151
175
(
2018
).
29.
R.
Conte
,
C.
Qu
,
P. L.
Houston
, and
J. M.
Bowman
, “
Efficient generation of permutationally invariant potential energy surfaces for large molecules
,”
J. Chem. Theory Comput.
16
,
3264
3272
(
2020
).
30.
T.
Morawietz
,
V.
Sharma
, and
J.
Behler
, “
A neural network potential-energy surface for the water dimer based on environment-dependent atomic energies and charges
,”
J. Chem. Phys.
136
,
064103
(
2012
).
31.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
32.
O. T.
Unke
and
M.
Meuwly
, “
PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges
,”
J. Chem. Theory Comput.
15
,
3678
3693
(
2019
).
33.
S.
Manzhos
,
R.
Dawes
, and
T.
Carrington
, “
Neural network-based approaches for building high dimensional and quantum dynamics-friendly potential energy surfaces
,”
Int. J. Quantum Chem.
115
,
1012
1020
(
2014
).
34.
J.
Behler
, “
Constructing high-dimensional neural network potentials: A tutorial review
,”
Int. J. Quantum Chem.
115
,
1032
1050
(
2015
).
35.
B.
Jiang
,
J.
Li
, and
H.
Guo
, “
Potential energy surfaces from high fidelity fitting of ab initio points: The permutation invariant polynomial - neural network approach
,”
Int. Rev. Phys. Chem.
35
,
479
506
(
2016
).
36.
C.
Schran
,
J.
Behler
, and
D.
Marx
, “
Automated fitting of neural network potentials at coupled cluster accuracy: Protonated water clusters as testing ground
,”
J. Chem. Theory Comput.
16
,
88
99
(
2019
).
37.
A.
Kamath
,
R. A.
Vargas-Hernández
,
R. V.
Krems
,
T.
Carrington
, and
S.
Manzhos
, “
Neural networks vs Gaussian process regression for representing potential energy surfaces: A comparative study of fit quality and vibrational spectrum accuracy
,”
J. Chem. Phys.
148
,
241702
(
2018
).
38.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
, “
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
,”
Phys. Rev. Lett.
104
,
136403
(
2010
).
39.
C.
Qu
,
Q.
Yu
,
B. L.
Van Hoozen
,
J. M.
Bowman
, and
R. A.
Vargas-Hernández
, “
Assessing Gaussian process regression and permutationally invariant polynomial approaches to represent high-dimensional potential energy surfaces
,”
J. Chem. Theory Comput.
14
,
3381
3396
(
2018
).
40.
C. E.
Rasmussen
and
C. K. I.
Williams
, in
Gaussian Processes for Machine Learning
, edited by
T.
Dietterich
(
The MIT Press
,
Cambridge, MS
,
2006
).
41.
H.
Sugisawa
,
T.
Ida
, and
R. V.
Krems
, “
Gaussian process model of 51-dimensional potential energy surface for protonated imidazole dimer
,”
J. Chem. Phys.
153
,
114101
(
2020
).
42.
J.
Dai
and
R. V.
Krems
, “
Interpolation and extrapolation of global potential energy surfaces for polyatomic systems by Gaussian processes with composite kernels
,”
J. Chem. Theory Comput.
16
,
1386
1395
(
2020
).
43.
R. A.
Vargas-Hernández
,
Y.
Guan
,
D. H.
Zhang
, and
R. V.
Krems
, “
Bayesian optimization for the inverse scattering problem in quantum reaction dynamics
,”
New J. Phys.
21
,
022001
(
2019
).
44.
O. T.
Unke
and
M.
Meuwly
, “
Toolkit for the construction of reproducing kernel-based representations of data: Application to multidimensional potential energy surfaces
,”
J. Chem. Inf. Model.
57
,
1923
1931
(
2017
).
45.
P. O.
Dral
,
A.
Owens
,
S. N.
Yurchenko
, and
W.
Thiel
, “
Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels
,”
J. Chem. Phys.
146
,
244108
(
2017
).
46.
D.
Koner
and
M.
Meuwly
, “
Permutationally invariant, reproducing kernel-based potential energy surfaces for polyatomic molecules: From formaldehyde to acetone
,”
J. Chem. Theory Comput.
16
,
5474
5484
(
2020
).
47.
A.
Iske
,
Approximation Theory and Algorithms for Data Analysis
(
Springer International Publishing
,
2018
).
48.
B.
Settles
, “
Active learning literature survey
,” Technical Report No. 1648,
Department of Computer Sciences, University of Wisconsin-Madison
,
2009
.
49.
A. A.
Peterson
,
R.
Christensen
, and
A.
Khorshidi
, “
Addressing uncertainty in atomistic machine learning
,”
Phys. Chem. Chem. Phys.
19
,
10978
10985
(
2017
).
50.
Q.
Lin
,
Y.
Zhang
,
B.
Zhao
, and
B.
Jiang
, “
Automatically growing global reactive neural network potential energy surfaces: A trajectory-free active learning strategy
,”
J. Chem. Phys.
152
,
154104
(
2020
).
51.
L.
Zhang
,
D.-Y.
Lin
,
H.
Wang
,
R.
Car
, and
W.
E
, “
Active learning of uniformly accurate interatomic potentials for materials simulation
,”
Phys. Rev. Mater.
3
,
023804
(
2019
).
52.
E.
Uteva
,
R. S.
Graham
,
R. D.
Wilkinson
, and
R. J.
Wheatley
, “
Active learning in Gaussian process interpolation of potential energy surfaces
,”
J. Chem. Phys.
149
,
174114
(
2018
).
53.
T. D.
Loeffler
,
T. K.
Patra
,
H.
Chan
,
M.
Cherukara
, and
S. K. R. S.
Sankaranarayanan
, “
Active learning the potential energy landscape for water clusters from sparse training data
,”
J. Phys. Chem. C
124
,
4907
4916
(
2020
).
54.
Y.
Zhai
,
A.
Caruso
,
S.
Gao
, and
F.
Paesani
, “
Active learning of many-body configuration space: Application to the Cs+–water MB-nrg potential energy function as a case study
,”
J. Chem. Phys.
152
,
144103
(
2020
).
55.
J.
Vandermause
,
S. B.
Torrisi
,
S.
Batzner
,
Y.
Xie
,
L.
Sun
,
A. M.
Kolpak
, and
B.
Kozinsky
, “
On-the-fly active learning of interpretable Bayesian force fields for atomistic rare events
,”
npj Comput Mater.
6
,
20
(
2020
).
56.
E. V.
Podryabinkin
and
A. V.
Shapeev
, “
Active learning of linearly parametrized interatomic potentials
,”
Comput. Mater. Sci.
140
,
171
180
(
2017
).
57.
M.
Gastegger
,
J.
Behler
, and
P.
Marquetand
, “
Machine learning molecular dynamics for the simulation of infrared spectra
,”
Chem. Sci.
8
,
6924
6935
(
2017
).
58.
J. S.
Smith
,
B.
Nebgen
,
N.
Lubbers
,
O.
Isayev
, and
A. E.
Roitberg
, “
Less is more: Sampling chemical space with active learning
,”
J. Chem. Phys.
148
,
241733
(
2018
).
59.
G.
Sivaraman
,
A. N.
Krishnamoorthy
,
M.
Baur
,
C.
Holm
,
M.
Stan
,
G.
Csányi
,
C.
Benmore
, and
Á.
Vázquez-Mayagoitia
, “
Machine-learned interatomic potentials by active learning: Amorphous and liquid hafnium dioxide
,”
npj Comput. Mater.
6
,
104
(
2020
).
60.
Y.
Guan
,
S.
Yang
, and
D. H.
Zhang
, “
Construction of reactive potential energy surfaces with Gaussian process regression: Active data selection
,”
Mol. Phys.
116
,
823
834
(
2018
).
61.
Q.
Lin
,
L.
Zhang
,
Y.
Zhang
, and
B.
Jiang
, “
Searching configurations in uncertainty space: Active learning of high-dimensional neural network reactive potentials
,”
J. Chem. Theory Comput.
17
,
2691
2701
(
2021
).
62.
H. S.
Seung
,
M.
Opper
, and
H.
Sompolinsky
, “
Query by committee
,” in
Proceedings of the Fifth Annual Workshop on Computational Learning Theory
(
ACM
,
1992
), pp.
287
294
.
63.
S.
Kee
,
E.
del Castillo
, and
G.
Runger
, “
Query-by-committee improvement with diversity and density in batch active learning
,”
Inf. Sci.
454-455
,
401
418
(
2018
).
64.
Z.
Wang
and
J.
Ye
, “
Querying discriminative and representative samples for batch mode active learning
,”
ACM Trans. Knowl. Discovery Data
9
,
1
23
(
2015
).
65.
C.
Shui
,
F.
Zhou
,
C.
Gagné
, and
B.
Wang
, “
Deep active learning: Unified and principled method for query and training
,” in
Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research
, edited by
S.
Chiappa
and
R.
Calandra
(
PMLR, Online
,
2020
), Vol. 108, pp.
1308
1318
.
66.
A.
Borisov
,
E.
Tuv
, and
G.
Runger
, “
Active batch learning with stochastic query-by-forest (SQBF)
,” in
Active Learning and Experimental Design Workshop in Conjunction with AISTATS 2010
(
PMLR
,
2011
), pp.
59
69
.
67.
M.
Johny
,
J.
Onvlee
,
T.
Kierspel
,
H.
Bieker
,
S.
Trippel
, and
J.
Küpper
, “
Spatial separation of pyrrole and pyrrole-water clusters
,”
Chem. Phys. Lett.
721
,
149
152
(
2019
); arXiv:1901.05267 [physics].
68.
Y.
Freund
,
H. S.
Seung
,
E.
Shamir
, and
N.
Tishby
, “
Information, prediction, and query by committee
,” in
Advances in Neural Information Processing Systems
(
Morgan Kaufmann Publishers
,
1993
), pp.
483
490
.
69.
G.
James
,
D.
Witten
,
T.
Hastie
, and
R.
Tibshirani
,
An Introduction to Statistical Learning
(
Springer
,
2013
), Vol. 112.
70.
H.
Laurent
and
R. L.
Rivest
, “
Constructing optimal binary decision trees is NP-complete
,”
Inf. Process. Lett.
5
,
15
17
(
1976
).
71.
L.
Breiman
, “
Random forests
,”
Mach. Learn.
45
,
5
32
(
2001
).
72.
P.
Geurts
,
D.
Ernst
, and
L.
Wehenkel
, “
Extremely randomized trees
,”
Mach. Learn.
63
,
3
42
(
2006
).
73.
G.
Louppe
, “
Understanding random forests
,” Ph.D. thesis,
University of Liège
,
2014
; arXiv:1407.7502 [stat.ML].
74.

The probability of not selecting a point in n draws of n samples with replacement is (1 − 1/n)n, which converges in the limit of n → ∞ to e−1. Hence, bootstrap samples draw, on average, 1 − 1/e ≈ 63.2% of unique samples.73,101

75.

This bound can be straightforwardly obtained by noting that matrix multiplications are the most expensive computations in the forward and backward passes of the NN training. We assume here that matrix multiplication scales as Θ(N3).

76.
M. J.
Tubergen
,
A. M.
Andrews
, and
R. L.
Kuczkowski
, “
Microwave spectrum and structure of a hydrogen-bonded pyrrole-water complex
,”
J. Phys. Chem.
97
,
7451
7457
(
1993
).
77.
U.
Nygaard
,
J. T.
Nielsen
,
J.
Kirchheiner
,
G.
Maltesen
,
J.
Rastrup-Andersen
, and
G.
Sørensen
, “
Microwave spectra of isotopic pyrroles: Molecular structure, dipole moment and 14N quadrupole coupling constants of pyrrole
,”
J. Mol. Struct.
3
,
491
506
(
1969
).
78.
H.-J.
Werner
and
F. R.
Manby
, “
Explicitly correlated second-order perturbation theory using density fitting and local approximations
,”
J. Chem. Phys.
124
,
054114
(
2006
).
79.
F. R.
Manby
,
H.-J.
Werner
,
T. B.
Adler
, and
A. J.
May
, “
Explicitly correlated local second-order perturbation theory with a frozen geminal correlation factor
,”
J. Chem. Phys.
124
,
094103
(
2006
).
80.
H.-J.
Werner
,
T. B.
Adler
, and
F. R.
Manby
, “
General orbital invariant MP2-F12 theory
,”
J. Chem. Phys.
126
,
164102
(
2007
).
81.
K. A.
Peterson
,
T. B.
Adler
, and
H.-J.
Werner
, “
Systematically convergent basis sets for explicitly correlated wavefunctions: The atoms H, He, B–Ne, and Al–Ar
,”
J. Chem. Phys.
128
,
084102
(
2008
).
82.
R. A.
Shaw
and
J. G.
Hill
, “
Approaching the Hartree-Fock limit through the complementary auxiliary basis set singles correction and auxiliary basis sets
,”
J. Chem. Theory Comput.
13
,
1691
1698
(
2017
).
83.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
, “
Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations
,”
J. Chem. Phys.
116
,
3175
3183
(
2002
).
84.
H.-J.
Werner
,
P. J.
Knowles
,
F. R.
Manby
,
J. A.
Black
,
K.
Doll
,
A.
Heßelmann
,
D.
Kats
,
A.
Köhn
,
T.
Korona
,
D. A.
Kreplin
,
Q.
Ma
,
T. F.
Miller
,
A.
Mitrushchenkov
,
K. A.
Peterson
,
I.
Polyak
,
G.
Rauhut
, and
M.
Sibaev
, “
The Molpro quantum chemistry package
,”
J. Chem. Phys.
152
,
144107
(
2020
).
85.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
, “
Molpro: A general-purpose quantum chemistry program package
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
253
(
2012
).
86.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
,
P.
Celani
,
W.
Györffy
,
D.
Kats
,
T.
Korona
,
R.
Lindh
,
A.
Mitrushenkov
,
G.
Rauhut
,
K. R.
Shamasundar
,
T. B.
Adler
,
R. D.
Amos
,
S. J.
Bennie
,
A.
Bernhardsson
,
A.
Berning
,
D. L.
Cooper
,
M. J. O.
Deegan
,
A. J.
Dobbyn
,
F.
Eckert
,
E.
Goll
,
C.
Hampel
,
A.
Hesselmann
,
G.
Hetzer
,
T.
Hrenar
,
G.
Jansen
,
C.
Köppl
,
S. J. R.
Lee
,
Y.
Liu
,
A. W.
Lloyd
,
Q.
Ma
,
R. A.
Mata
,
A. J.
May
,
S. J.
McNicholas
,
W.
Meyer
,
T. F.
Miller
 III
,
M. E.
Mura
,
A.
Nicklass
,
D. P.
O’Neill
,
P.
Palmieri
,
D.
Peng
,
K.
Pflüger
,
R.
Pitzer
,
M.
Reiher
,
T.
Shiozaki
,
H.
Stoll
,
A. J.
Stone
,
R.
Tarroni
,
T.
Thorsteinsson
,
M.
Wang
, and
M.
Welborn
, molpro, version, a package of ab initio programs. See https://www.molpro.net.
87.
Y.
Paukku
,
K. R.
Yang
,
Z.
Varga
, and
D. G.
Truhlar
, “
Global ab initio ground-state potential energy surface of N4
,”
J. Chem. Phys.
139
,
044309
(
2013
).
88.
J.
Cui
and
R. V.
Krems
, “
Efficient non-parametric fitting of potential energy surfaces for polyatomic molecules with Gaussian processes
,”
J. Phys. B: At. Mol. Opt. Phys.
49
,
224001
(
2016
).
89.
J. T.
Ash
,
C.
Zhang
,
A.
Krishnamurthy
,
J.
Langford
, and
A.
Agarwal
, “
Deep batch active learning by diverse, uncertain gradient lower bounds
,” in
International Conference on Learning Representations (ICLR)
,
2020
.
90.
K. A.
Peterson
,
D.
Feller
, and
D. A.
Dixon
, “
Chemical accuracy in ab initio thermochemistry and spectroscopy: Current strategies and future challenges
,”
Theor. Chem. Acc.
131
,
1079
(
2012
).
91.
A.
Owens
,
S. N.
Yurchenko
,
A.
Yachmenev
,
J.
Tennyson
, and
W.
Thiel
, “
Accurate ab initio vibrational energies of methyl chloride
,”
J. Chem. Phys.
142
,
244306
(
2015
).
92.
A.
Yachmenev
,
S. N.
Yurchenko
,
T.
Ribeyre
, and
W.
Thiel
, “
High-level ab initio potential energy surfaces and vibrational energies of H2CS
,”
J. Chem. Phys.
135
,
074302
(
2011
).
93.
P. O.
Dral
,
A.
Owens
,
A.
Dral
, and
G.
Csányi
, “
Hierarchical machine learning of potential energy surfaces
,”
J. Chem. Phys.
152
,
204110
(
2020
).
94.
R.
Ramakrishnan
,
P. O.
Dral
,
M.
Rupp
, and
O. A.
Von Lilienfeld
, “
Quantum chemistry structures and properties of 134 kilo molecules
,”
Sci. Data
1
,
140022
(
2014
).
95.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
Von Lilienfeld
, “
Fast and accurate modeling of molecular atomization energies with machine learning
,”
Phys. Rev. Lett.
108
,
058301
(
2012
).
96.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
, “
ANI-1, a data set of 20 million calculated off-equilibrium conformations for organic molecules
,”
Sci. Data
4
,
170193
(
2017
).
97.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
,
J.
Vanderplas
,
A.
Passos
,
D.
Cournapeau
,
M.
Brucher
,
M.
Perrot
, and
E.
Duchesnay
, “
Scikit-learn: Machine learning in Python
,”
J. Mach. Learn. Res.
12
,
2825
2830
(
2011
).
98.
Y.-Y.
Yang
,
S.-C.
Lee
,
Y.-A.
Chung
,
T.-E.
Wu
,
S.-A.
Chen
, and
H.-T.
Lin
, “
libact: Pool-based active learning in python
,” Technical Report,
National Taiwan University
,
2017
; arXiv:1710.00379 [cs].
99.
M.
Abadi
,
A.
Agarwal
,
P.
Barham
,
E.
Brevdo
,
Z.
Chen
,
C.
Citro
,
G. S.
Corrado
,
A.
Davis
,
J.
Dean
,
M.
Devin
,
S.
Ghemawat
,
I.
Goodfellow
,
A.
Harp
,
G.
Irving
,
M.
Isard
,
Y.
Jia
,
R.
Jozefowicz
,
L.
Kaiser
,
M.
Kudlur
,
J.
Levenberg
,
D.
Mané
,
R.
Monga
,
S.
Moore
,
D.
Murray
,
C.
Olah
,
M.
Schuster
,
J.
Shlens
,
B.
Steiner
,
I.
Sutskever
,
K.
Talwar
,
P.
Tucker
,
V.
Vanhoucke
,
V.
Vasudevan
,
F.
Viégas
,
O.
Vinyals
,
P.
Warden
,
M.
Wattenberg
,
M.
Wicke
,
Y.
Yu
, and
X.
Zheng
, “
TensorFlow: Large-scale machine learning on heterogeneous systems
,”
2015
, software available from https://www.tensorflow.org.
100.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” in
3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings
, edited by
Y.
Bengio
and
Y.
LeCun
(
2015
), arXiv:1412.6980.
101.
I. H.
Witten
,
E.
Frank
, and
M. A.
Hall
,
Data Mining: Practical Machine Learning Tools and Techniques
, Morgan Kaufmann Series in Data Management Systems (
Morgan Kaufmann
,
2017
).

Supplementary Material

You do not currently have access to this content.