Double ionization (DI) is a fundamental process that despite its apparent simplicity provides rich opportunities for probing and controlling the electronic motion. Even for the simplest multielectron atom, helium, new DI mechanisms are still being found. To first order in the field strength, a strong external field doubly ionizes the electrons in helium such that they are ejected into the same direction (front-to-back motion). The ejection into opposite directions (back-to-back motion) cannot be described to first order, making it a challenging target for control. Here, we address this challenge and optimize the field with the objective of back-to-back double ionization using a (1 + 1)-dimensional model. The optimization is performed using four different control procedures: (1) short-time control, (2) derivative-free optimization of basis expansions of the field, (3) the Krotov method, and (4) control of the classical equations of motion. All four procedures lead to fields with dominant back-to-back motion. All the fields obtained exploit essentially the same two-step mechanism leading to back-to-back motion: first, the electrons are displaced by the field into the same direction. Second, after the field turns off, the nuclear attraction and the electron–electron repulsion combine to generate the final motion into opposite directions for each electron. By performing quasi-classical calculations, we confirm that this mechanism is essentially classical.

1.
C. F.
de Morisson Faria
and
X.
Liu
,
J. Mod. Opt.
58
,
1076
(
2011
).
2.
A.
Staudte
,
C.
Ruiz
,
M.
Schöffler
,
S.
Schössler
,
D.
Zeidler
,
T.
Weber
,
M.
Meckel
,
D. M.
Villeneuve
,
P. B.
Corkum
,
A.
Becker
, and
R.
Dörner
,
Phys. Rev. Lett.
99
,
263002
(
2007
).
3.
D.
Azoury
,
M.
Krüger
,
G.
Orenstein
,
H. R.
Larsson
,
S.
Bauch
,
B. D.
Bruner
, and
N.
Dudovich
,
Nat. Commun.
8
,
1453
(
2017
).
4.
K.
Ueda
,
E.
Sokell
,
S.
Schippers
,
F.
Aumayr
,
H.
Sadeghpour
,
J.
Burgdörfer
,
C.
Lemell
,
X.-M.
Tong
,
T.
Pfeifer
,
F.
Calegari
,
A.
Palacios
,
F.
Martin
,
P.
Corkum
,
G.
Sansone
,
E. V.
Gryzlova
,
A. N.
Grum-Grzhimailo
,
M. N.
Piancastelli
,
P. M.
Weber
,
T.
Steinle
,
K.
Amini
,
J.
Biegert
,
N.
Berrah
,
E.
Kukk
,
R.
Santra
,
A.
Müller
,
D.
Dowek
,
R. R.
Lucchese
,
C. W.
McCurdy
,
P.
Bolognesi
,
L.
Avaldi
,
T.
Jahnke
,
M. S.
Schöffler
,
R.
Dörner
,
Y.
Mairesse
,
L.
Nahon
,
O.
Smirnova
,
T.
Schlathölter
,
E. E. B.
Campbell
,
J.-M.
Rost
,
M.
Meyer
, and
K. A.
Tanaka
,
J. Phys. B: At., Mol. Opt. Phys.
52
,
171001
(
2019
).
5.
K.
Amini
,
J.
Biegert
,
F.
Calegari
,
A.
Chacón
,
M. F.
Ciappina
,
A.
Dauphin
,
D. K.
Efimov
,
C.
Figueira de Morisson Faria
,
K.
Giergiel
,
P.
Gniewek
,
A. S.
Landsman
,
M.
Lesiuk
,
M.
Mandrysz
,
A. S.
Maxwell
,
R.
Moszyński
,
L.
Ortmann
,
J.
Antonio Pérez-Hernández
,
A.
Picón
,
E.
Pisanty
,
J.
Prauzner-Bechcicki
,
K.
Sacha
,
N.
Suárez
,
A.
Zaïr
,
J.
Zakrzewski
, and
M.
Lewenstein
,
Rep. Prog. Phys.
82
,
116001
(
2019
).
6.
R.
Dörner
,
T.
Weber
,
M.
Weckenbrock
,
A.
Staudte
,
M.
Hattass
,
H.
Schmidt-Böcking
,
R.
Moshammer
, and
J.
Ullrich
, “
Multiple ionization in strong laser fields
,” in
Advances in Atomic, Molecular, and Optical Physics
, edited by
B.
Bederson
and
H.
Walther
(
Academic Press
,
2002
), Vol. 48, pp.
1
34
.
7.
W.
Becker
and
H.
Rottke
,
Contemp. Phys.
49
,
199
(
2008
).
8.
A. H.
Winney
,
S. K.
Lee
,
Y. F.
Lin
,
Q.
Liao
,
P.
Adhikari
,
G.
Basnayake
,
H. B.
Schlegel
, and
W.
Li
,
Phys. Rev. Lett.
119
,
123201
(
2017
).
9.
X.
Li
,
J.
Yu
,
H.
Xu
,
X.
Yu
,
Y.
Yang
,
Z.
Wang
,
P.
Ma
,
C.
Wang
,
F.
Guo
,
Y.
Yang
,
S.
Luo
, and
D.
Ding
,
Phys. Rev. A
100
,
013415
(
2019
).
10.
A.
Kramida
,
Y.
Ralchenko
,
J.
Reader
, and
NIST ASD Team
, NIST Atomic Spectra Database (ver. 5.5.2), available: https://physics.nist.gov/asd, National Institute of Standards and Technology, Gaithersburg, MD,
2018
.
11.
L.
Zhang
,
X.
Xie
,
S.
Roither
,
Y.
Zhou
,
P.
Lu
,
D.
Kartashov
,
M.
Schöffler
,
D.
Shafir
,
P. B.
Corkum
,
A.
Baltuška
,
A.
Staudte
, and
M.
Kitzler
,
Phys. Rev. Lett.
112
,
193002
(
2014
).
12.
A. S.
Maxwell
and
C.
Figueira de Morisson Faria
,
Phys. Rev. Lett.
116
,
143001
(
2016
).
13.
A.
Rudenko
,
L.
Foucar
,
M.
Kurka
,
T.
Ergler
,
K. U.
Kühnel
,
Y. H.
Jiang
,
A.
Voitkiv
,
B.
Najjari
,
A.
Kheifets
,
S.
Lüdemann
,
T.
Havermeier
,
M.
Smolarski
,
S.
Schössler
,
K.
Cole
,
M.
Schöffler
,
R.
Dörner
,
S.
Düsterer
,
W.
Li
,
B.
Keitel
,
R.
Treusch
,
M.
Gensch
,
C. D.
Schröter
,
R.
Moshammer
, and
J.
Ullrich
,
Phys. Rev. Lett.
101
,
073003
(
2008
).
14.
R.
Moshammer
,
Y. H.
Jiang
,
L.
Foucar
,
A.
Rudenko
,
T.
Ergler
,
C. D.
Schröter
,
S.
Lüdemann
,
K.
Zrost
,
D.
Fischer
,
J.
Titze
,
T.
Jahnke
,
M.
Schöffler
,
T.
Weber
,
R.
Dörner
,
T. J. M.
Zouros
,
A.
Dorn
,
T.
Ferger
,
K. U.
Kühnel
,
S.
Düsterer
,
R.
Treusch
,
P.
Radcliffe
,
E.
Plönjes
, and
J.
Ullrich
,
Phys. Rev. Lett.
98
,
203001
(
2007
).
15.
Y. H.
Jiang
,
A.
Rudenko
,
M.
Kurka
,
K. U.
Kühnel
,
L.
Foucar
,
T.
Ergler
,
S.
Lüdemann
,
K.
Zrost
,
T.
Ferger
,
D.
Fischer
,
A.
Dorn
,
J.
Titze
,
T.
Jahnke
,
M.
Schöffler
,
S.
Schössler
,
T.
Havermeier
,
M.
Smolarski
,
K.
Cole
,
R.
Dörner
,
T. J. M.
Zouros
,
S.
Düsterer
,
R.
Treusch
,
M.
Gensch
,
C. D.
Schröter
,
R.
Moshammer
, and
J.
Ullrich
,
J. Phys. B: At., Mol. Opt. Phys.
42
,
134012
(
2009
).
16.
G. P.
Katsoulis
,
A.
Hadjipittas
,
B.
Bergues
,
M. F.
Kling
, and
A.
Emmanouilidou
,
Phys. Rev. Lett.
121
,
263203
(
2018
).
17.
M.
Kübel
,
K. J.
Betsch
,
N. G.
Kling
,
A. S.
Alnaser
,
J.
Schmidt
,
U.
Kleineberg
,
Y.
Deng
,
I.
Ben-Itzhak
,
G. G.
Paulus
,
T.
Pfeifer
,
J.
Ullrich
,
R.
Moshammer
,
M. F.
Kling
, and
B.
Bergues
,
New J. Phys.
16
,
033008
(
2014
).
18.
A.
Becker
and
F. H. M.
Faisal
,
Phys. Rev. A
50
,
3256
(
1994
).
19.
S.
Chen
,
C.
Ruiz
, and
A.
Becker
,
Phys. Rev. A
82
,
033426
(
2010
).
20.
A.
Liu
and
U.
Thumm
,
Phys. Rev. A
89
,
063423
(
2014
).
21.
G. D.
Borisova
,
V.
Stooß
,
A.
Dingeldey
,
A.
Kaldun
,
T.
Ding
,
P.
Birk
,
M.
Hartmann
,
T.
Heldt
,
C.
Ott
, and
T.
Pfeifer
,
J. Phys. Commun.
4
,
055012
(
2020
).
22.
B.
Bergues
,
M.
Kübel
,
N. G.
Johnson
,
B.
Fischer
,
N.
Camus
,
K. J.
Betsch
,
O.
Herrwerth
,
A.
Senftleben
,
A. M.
Sayler
,
T.
Rathje
,
T.
Pfeifer
,
I.
Ben-Itzhak
,
R. R.
Jones
,
G. G.
Paulus
,
F.
Krausz
,
R.
Moshammer
,
J.
Ullrich
, and
M. F.
Kling
,
Nat. Commun.
3
,
813
(
2012
).
23.
J. M.
Ngoko Djiokap
,
N. L.
Manakov
,
A. V.
Meremianin
,
S. X.
Hu
,
L. B.
Madsen
, and
A. F.
Starace
,
Phys. Rev. Lett.
113
,
223002
(
2014
).
24.
Y.
Liu
,
S.
Tschuch
,
A.
Rudenko
,
M.
Dürr
,
M.
Siegel
,
U.
Morgner
,
R.
Moshammer
, and
J.
Ullrich
,
Phys. Rev. Lett.
101
,
053001
(
2008
).
25.
J. S.
Prauzner-Bechcicki
,
K.
Sacha
,
B.
Eckhardt
, and
J.
Zakrzewski
,
Phys. Rev. Lett.
98
,
203002
(
2007
).
26.
M.
Lein
,
E. K. U.
Gross
, and
V.
Engel
,
Phys. Rev. Lett.
85
,
4707
(
2000
).
27.
E.
Eremina
,
X.
Liu
,
H.
Rottke
,
W.
Sandner
,
A.
Dreischuh
,
F.
Lindner
,
F.
Grasbon
,
G. G.
Paulus
,
H.
Walther
,
R.
Moshammer
,
B.
Feuerstein
, and
J.
Ullrich
,
J. Phys. B: At., Mol. Opt. Phys.
36
,
3269
(
2003
).
28.
D. A.
Horner
,
T. N.
Rescigno
, and
C. W.
McCurdy
,
Phys. Rev. A
77
,
030703
(
2008
).
29.
E.
Foumouo
,
P.
Antoine
,
B.
Piraux
,
L.
Malegat
,
H.
Bachau
, and
R.
Shakeshaft
,
J. Phys. B: At., Mol. Opt. Phys.
41
,
051001
(
2008
).
30.
D. J.
Tannor
and
S. A.
Rice
,
J. Chem. Phys.
83
,
5013
(
1985
).
31.
R.
Kosloff
,
S. A.
Rice
,
P.
Gaspard
,
S.
Tersigni
, and
D. J.
Tannor
,
Chem. Phys.
139
,
201
(
1989
).
32.
D. J.
Tannor
and
A.
Bartana
,
J. Phys. Chem. A
103
,
10359
(
1999
).
33.
P.
Doria
,
T.
Calarco
, and
S.
Montangero
,
Phys. Rev. Lett.
106
,
190501
(
2011
).
34.
R. E.
Goetz
,
M.
Merkel
,
A.
Karamatskou
,
R.
Santra
, and
C. P.
Koch
,
Phys. Rev. A
94
,
023420
(
2016
).
35.
R.
Heck
,
O.
Vuculescu
,
J. J.
Sørensen
,
J.
Zoller
,
M. G.
Andreasen
,
M. G.
Bason
,
P.
Ejlertsen
,
O.
Elíasson
,
P.
Haikka
,
J. S.
Laustsen
,
L. L.
Nielsen
,
A.
Mao
,
R.
Müller
,
M.
Napolitano
,
M. K.
Pedersen
,
A. R.
Thorsen
,
C.
Bergenholtz
,
T.
Calarco
,
S.
Montangero
, and
J. F.
Sherson
,
Proc. Natl. Acad. Sci. U. S. A.
115
,
E11231
(
2018
).
36.
A.
Larrouy
,
S.
Patsch
,
R.
Richaud
,
J.-M.
Raimond
,
M.
Brune
,
C. P.
Koch
, and
S.
Gleyzes
,
Phys. Rev. X
10
,
021058
(
2020
).
37.
E.
Papastathopoulos
,
M.
Strehle
, and
G.
Gerber
,
Chem. Phys. Lett.
408
,
65
(
2005
).
38.
M.
Sukharev
,
E.
Charron
, and
A.
Suzor-Weiner
,
Phys. Rev. A
66
,
053407
(
2002
).
39.
R. E.
Goetz
,
A.
Karamatskou
,
R.
Santra
, and
C. P.
Koch
,
Phys. Rev. A
93
,
013413
(
2016
).
40.
J. B.
Schönborn
,
P.
Saalfrank
, and
T.
Klamroth
,
J. Chem. Phys.
144
,
044301
(
2016
).
41.
I.
Schaefer
and
R.
Kosloff
,
Phys. Rev. A
101
,
023407
(
2020
).
42.
H. R.
Larsson
,
S.
Bauch
,
L. K.
Sørensen
, and
M.
Bonitz
,
Phys. Rev. A
93
,
013426
(
2016
).
43.
S.
Bauch
,
H. R.
Larsson
,
C.
Hinz
, and
M.
Bonitz
,
J. Phys.: Conf. Ser.
696
,
012008
(
2016
).
44.
C.
Yu
and
L. B.
Madsen
,
Phys. Rev. A
94
,
053424
(
2016
).
45.
M. S.
Pindzola
,
G. M.
Laurent
, and
J. P.
Colgan
,
J. Phys. B: At., Mol. Opt. Phys.
50
,
185601
(
2017
).
46.
A.
Marinelli
,
D.
Ratner
,
A. A.
Lutman
,
J.
Turner
,
J.
Welch
,
F.-J.
Decker
,
H.
Loos
,
C.
Behrens
,
S.
Gilevich
,
A. A.
Miahnahri
,
S.
Vetter
,
T. J.
Maxwell
,
Y.
Ding
,
R.
Coffee
,
S.
Wakatsuki
, and
Z.
Huang
,
Nat. Commun.
6
,
6369
(
2015
).
47.
C.
Emma
,
X.
Xu
,
A.
Fisher
,
R.
Robles
,
J. P.
MacArthur
,
J.
Cryan
,
M. J.
Hogan
,
P.
Musumeci
,
G.
White
, and
A.
Marinelli
,
APL Photonics
6
,
076107
(
2021
).
48.
U.
Bergmann
,
J.
Kern
,
R. W.
Schoenlein
,
P.
Wernet
,
V. K.
Yachandra
, and
J.
Yano
,
Nat. Rev. Phys.
3
,
264
(
2021
).
49.
H. R.
Larsson
,
B.
Hartke
, and
D. J.
Tannor
,
J. Chem. Phys.
145
,
204108
(
2016
).
50.
H. R.
Larsson
,
J.
Riedel
,
J.
Wei
,
F.
Temps
, and
B.
Hartke
,
J. Chem. Phys.
148
,
204309
(
2018
).
51.
D.
Tannor
,
S.
Machnes
,
E.
Assémat
, and
H. R.
Larsson
, “
Phase space versus coordinate space methods: Prognosis for large quantum calculations
,” in
Advances in Chemical Physics
(
John Wiley & Sons, Inc.
,
2018
), Vol. 163, pp.
273
323
.
52.
H. R.
Larsson
and
D. J.
Tannor
,
J. Chem. Phys.
147
,
044103
(
2017
).
53.

Throughout, we use atomic units (me = e = 4πϵ0 = a0 = 2|ERyd| = 1) unless indicated otherwise.

54.
E.
Assémat
,
S.
Machnes
, and
D.
Tannor
, “
Double ionization of Helium from a phase space perspective
,” arXiv:1502.05165 (
2015
).
55.
B.
Bransden
and
C.
Joachain
,
Physics of Atoms and Molecules
, 2nd ed. (
Dorling Kindersley
,
2006
).
56.
L. B.
Madsen
,
Phys. Rev. A
65
,
053417
(
2002
).
57.
Y.-C.
Han
and
L. B.
Madsen
,
Phys. Rev. A
81
,
063430
(
2010
).
58.

It may also happen that the larger fraction of the doubly ionized wavepacket is in D1, but then, typically its main component is not along the u = 0 line, indicating not a true back-to-back motion.

59.
D. J.
Tannor
,
Introduction to Quantum Mechanics: A Time-Dependent Perspective
, 1st ed. (
University Science Books
,
2007
).
60.
G. G.
Balint-Kurti
,
S.
Zou
, and
A.
Brown
, “
Optimal control theory for manipulating molecular processes
,” in
Advances in Chemical Physics
(
John Wiley & Sons, Inc.
,
2008
), Vol. 138, pp.
43
94
.
61.
J.
Werschnik
and
E. K. U.
Gross
,
J. Phys. B: At., Mol. Opt. Phys.
40
,
R175
(
2007
).
62.

To simplify notation, we drop the hats in the coordinate operators û and v̂. It will be clear from the context whether operators are meant or not.

63.
V.
Engel
,
C.
Meier
, and
D. J.
Tannor
, “
Local control theory: Recent applications to energy and particle transfer processes in molecules
,” in
Advances in Chemical Physics
(
John Wiley & Sons, Inc.
,
2009
), Vol. 141, pp.
29
101
.
64.
Y.
Ohtsuki
,
Y.
Yahata
,
H.
Kono
, and
Y.
Fujimura
,
Chem. Phys. Lett.
287
,
627
(
1998
).
65.

Here, global optimization means not an optimization to a global minimum but that the field is optimized globally.

66.
A. R.
Conn
,
K.
Scheinberg
, and
L. N.
Vicente
,
Introduction to Derivative-Free Optimization
, 1st ed. (
SIAM
,
2009
).
67.
C.
Gollub
,
M.
Kowalewski
, and
R.
de Vivie-Riedle
,
Phys. Rev. Lett.
101
,
073002
(
2008
).
68.
M.
Schröder
and
A.
Brown
,
New J. Phys.
11
,
105031
(
2009
).
69.
V. F.
Krotov
,
Global Methods in Optimal Control Theory
, 1st ed. (
Dekker
,
1996
).
70.
D. J.
Tannor
,
V.
Kazakov
, and
V.
Orlov
, “
Control of photochemical branching: Novel procedures for finding optimal pulses and global upper bounds
,” in
Time-Dependent Quantum Molecular Dynamics
, edited by
J.
Broeckhove
and
L.
Lathouwers
(
Springer
,
1992
), pp.
347
360
.
71.
R.
Eitan
,
M.
Mundt
, and
D. J.
Tannor
,
Phys. Rev. A
83
,
053426
(
2011
).
72.
P.
Deuflhard
and
F.
Bornemann
,
Numerische Mathematik 2: Gewöhnliche Differentialgleichungen
, 3rd ed. (
de Gruyter
,
2008
).
73.
J. A. E.
Andersson
,
J.
Gillis
,
G.
Horn
,
J. B.
Rawlings
, and
M.
Diehl
,
Math. Program. Comput.
11
,
1
(
2019
).
74.
M.
Brehm
, “
Analyzing trajectories from molecular simulation
,” Ph.D. thesis,
University of Leipzig
,
2013
.
75.
S.
Ruhman
and
R.
Kosloff
,
J. Opt. Soc. Am. B
7
,
1748
(
1990
).
76.
J.
Cao
and
K. R.
Wilson
,
J. Chem. Phys.
107
,
1441
(
1997
).
77.
S.
Ruetzel
,
C.
Stolzenberger
,
S.
Fechner
,
F.
Dimler
,
T.
Brixner
, and
D. J.
Tannor
,
J. Chem. Phys.
133
,
164510
(
2010
).
78.
M. J. D.
Powell
,
Acta Numer.
7
,
287
336
(
1998
).
79.
M. J. D.
Powell
, Cambridge NA Report No. NA200906,
2009
.
80.
T.
Weise
,
Global Optimization Algorithms
, 3rd ed. (
2011
), www.it-weise.de.
81.
W. P.
Schleich
,
Quantum Optics in Phase Space
, 1st ed. (
Wiley-VCH
,
2001
).
82.
S.
Fechner
,
F.
Dimler
,
T.
Brixner
,
G.
Gerber
, and
D. J.
Tannor
,
Opt. Express
15
,
15387
(
2007
).
83.
S.
Machnes
,
E.
Assémat
,
H. R.
Larsson
, and
D. J.
Tannor
,
J. Phys. Chem. A
120
,
3296
(
2016
).
84.
N.
Takemoto
,
A.
Shimshovitz
, and
D. J.
Tannor
,
J. Chem. Phys.
137
,
011102
(
2012
).
85.

Note that the field in the length gauge would have components with both positive and negative values. Note further that due to symmetry of the potential in u, the overall sign of the field does not matter.

86.

The larger momentum components for v = 0 are due to the form of the potential and as such are “ground state quantities” and not very interesting for this study.

87.
J. M.
Bowman
,
B.
Gazdy
, and
Q.
Sun
,
J. Chem. Phys.
91
,
2859
(
1989
).
88.
W. H.
Miller
,
W. L.
Hase
, and
C. L.
Darling
,
J. Chem. Phys.
91
,
2863
(
1989
).
89.
T.
Kjellsson
,
S.
Selstø
, and
E.
Lindroth
,
Phys. Rev. A
95
,
043403
(
2017
).

Supplementary Material

You do not currently have access to this content.