A recently proposed extended Hamiltonian approach to switching interaction potentials is generalized to enable adaptive partitioning molecular dynamics simulations. Switching is performed along a fictitious classical degree of freedom whose value determines the mixing ratio of the two potentials on a time scale determined by its associated mass. We propose to choose this associated fictitious mass adaptively so as to ensure a constant time scale for all switching processes. For different model systems, including a harmonic oscillator and a Lennard-Jones fluid, we investigate the window of switching time scales that guarantees the conservation of the extended Hamiltonian for a large number of switching events. The methodology is first applied in the microcanonical ensemble and then generalized to the canonical ensemble using a Nosé–Hoover chain thermostat. It is shown that the method is stable for thousands of consecutive switching events during a single simulation, with constant temperature and a conserved extended Hamiltonian. A slight modification of the original Hamiltonian is introduced to avoid accumulation of small numerical errors incurred after each switching process.

1.
K.
Farah
,
F.
Müller-Plathe
, and
M. C.
Böhm
,
Chem. Phys. Chem.
13
,
1127
(
2012
).
2.
M.
Caby
,
P.
Hardas
,
S.
Ramachandran
, and
J.-P.
Ryckaert
,
J. Chem. Phys.
136
,
114901
(
2012
).
3.
N.
Takenaka
,
Y.
Suzuki
,
H.
Sakai
, and
M.
Nagaoka
,
Chem. Phys. Lett.
583
,
80
(
2013
).
4.
M.
Biedermann
,
D.
Diddens
, and
A.
Heuer
,
J. Chem. Theory Comput.
17
,
1074
(
2021
).
5.
A.
Warshel
and
M.
Levitt
,
J. Mol. Biol.
103
,
227
(
1976
).
6.
M. J.
Field
,
P. A.
Bash
, and
M.
Karplus
,
J. Comput. Chem.
11
,
700
(
1990
).
7.
M.
Karplus
,
Angew. Chem., Int. Ed.
53
,
9992
(
2014
).
8.
T.
Kerdcharoen
,
K. R.
Liedl
, and
B. M.
Rode
,
Chem. Phys.
211
,
313
(
1996
).
9.
C. F.
Schwenk
,
H. H.
Loeffler
, and
B. M.
Rode
,
J. Am. Chem. Soc.
125
,
1618
(
2003
).
10.
T. S.
Hofer
,
A. B.
Pribil
,
B. R.
Randolf
, and
B. M.
Rode
,
J. Am. Chem. Soc.
127
,
14231
(
2005
).
11.
T.
Kerdcharoen
and
K.
Morokuma
,
Chem. Phys. Lett.
355
,
257
(
2002
).
12.
A.
Heyden
,
H.
Lin
, and
D. G.
Truhlar
,
J. Phys. Chem. B
111
,
2231
(
2007
).
13.
S.
Pezeshki
and
H.
Lin
,
J. Chem. Theory Comput.
7
,
3625
(
2011
).
14.
R. E.
Bulo
,
B.
Ensing
,
J.
Sikkema
, and
L.
Visscher
,
J. Chem. Theory Comput.
5
,
2212
(
2009
).
15.
S. O.
Nielsen
,
P. B.
Moore
, and
B.
Ensing
,
Phys. Rev. Lett.
105
,
237802
(
2010
).
16.
M. P.
Waller
,
S.
Kumbhar
, and
J.
Yang
,
Chem. Phys. Chem.
15
,
3218
(
2014
).
17.
G.
Csányi
,
T.
Albaret
,
M. C.
Payne
, and
A.
De Vita
,
Phys. Rev. Lett.
93
,
175503
(
2004
).
18.
H.
Rafii-Tabar
,
L.
Hua
, and
M.
Cross
,
J. Comput.-Aided Mater. Des.
4
,
165
(
1998
).
19.
J. A.
Smirnova
,
L. V.
Zhigilei
, and
B. J.
Garrison
,
Comput. Phys. Commun.
118
,
11
(
1999
).
20.
J. Q.
Broughton
,
F. F.
Abraham
,
N.
Bernstein
, and
E.
Kaxiras
,
Phys. Rev. B
60
,
2391
(
1999
).
21.
A. W.
Duster
,
C.-H.
Wang
,
C. M.
Garza
,
D. E.
Miller
, and
H.
Lin
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
7
,
e1339
(
2017
).
22.
A. W.
Duster
,
C.-H.
Wang
, and
H.
Lin
,
Molecules
23
,
2170
(
2018
).
23.
L.
Delle Site
,
Phys. Rev. E
76
,
047701
(
2007
).
24.
C. N.
Rowley
and
B.
Roux
,
J. Chem. Theory Comput.
8
,
3526
(
2012
).
25.
M.
Shiga
and
M.
Masia
,
J. Chem. Phys.
139
,
044120
(
2013
).
26.
M.
Böckmann
,
N. L.
Doltsinis
, and
D.
Marx
,
J. Chem. Theory Comput.
11
,
2429
(
2015
).
27.
J. B.
Abrams
,
L.
Rosso
, and
M. E.
Tuckerman
,
J. Chem. Phys.
125
,
074115
(
2006
).
28.
M.
Praprotnik
,
L.
Delle Site
, and
K.
Kremer
,
J. Chem. Phys.
126
,
134902
(
2007
).
29.
C.
Krekeler
,
A.
Agarwal
,
C.
Junghans
,
M.
Praprotnik
, and
L.
Delle Site
,
J. Chem. Phys.
149
,
024104
(
2018
).
30.
J. M.
Boereboom
,
R.
Potestio
,
D.
Donadio
, and
R. E.
Bulo
,
J. Chem. Theory Comput.
12
,
3441
(
2016
).
31.
J. A.
Wagoner
and
V. S.
Pande
,
J. Chem. Phys.
148
,
141104
(
2018
).
32.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
,
J. Chem. Phys.
97
,
2635
(
1992
).
33.
A.
Smith
, in
The Coblentz Society Desk Book of Infrared Spectra
(
The Coblentz Society Kirkwood
,
MO
,
1982
), Vol. 2.
34.
T. D.
Kühne
 et al.,
J. Chem. Phys.
152
,
194103
(
2020
).
35.
R. C.
Kemp
,
W. R. G.
Kemp
, and
J. A.
Cowan
,
Metrologia
12
,
93
(
1976
).
36.
See Engineering toolbox, argon–density and specific weight, https://www.engineeringtoolbox.com/argon-density-specific-weight-temperature-pressure-d_2089.html; accessed 03 June 2019,
2018
.
37.
B. A.
Younglove
and
N. A.
Olien
, U.S. Department of Commerce National Bureau of Standards (NBS) Report No. 1079,
1985
, p.
119
.
38.
H.
Kinoshita
,
H.
Yoshida
, and
H.
Nakai
,
Celestial Mech. Dyn. Astron.
50
,
59
(
1991
).
40.
S.-L. J.
Lahey
and
C. N.
Rowley
,
Chem. Sci.
11
,
2362
(
2020
).

Supplementary Material

You do not currently have access to this content.