The strong-correlation factor of the recent KP16/B13 exchange–correlation functional has been adapted and applied to the framework of local hybrid (LH) functionals. The expression identifiable as nondynamical (NDC) and dynamical (DC) correlations in LHs is modified by inserting a position-dependent KP16/B13-style strong-correlation factor qAC(r) based on a local version of the adiabatic connection. Different ways of deriving this factor are evaluated for a simple one-parameter LH based on the local density approximation. While the direct derivation from the LH NDC term fails due to known deficiencies, hybrid approaches, where the factor is determined from the B13 NDC term as in KP16/B13 itself, provide remarkable improvements. In particular, a modified B13 NDC expression using Patra’s exchange-hole curvature showed promising results. When applied to the simple LH as a first attempt, it reduces atomic fractional-spin errors and deficiencies of spin-restricted bond dissociation curves to a similar extent as the KP16/B13 functional itself while maintaining the good accuracy of the underlying LH for atomization energies and reaction barriers in weakly correlated situations. The performance of different NDC expressions in deriving strong-correlation corrections is analyzed, and areas for further improvements of strong-correlation corrected LHs and related approaches are identified. All the approaches evaluated in this work have been implemented self-consistently into a developers’ version of the Turbomole program.

1.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
2.
A. D.
Becke
, “
Fifty years of density-functional theory in chemical physics
,”
J. Chem. Phys.
140
,
18A301
(
2014
).
3.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
, “
Challenges for density functional theory
,”
Chem. Rev.
112
,
289
320
(
2012
).
4.
P. A. M.
Dirac
, “
Note on exchange phenomena in the Thomas atom
,”
Math. Proc. Cambridge Philos. Soc.
26
,
376
385
(
1930
).
5.
J. C.
Slater
, “
A simplification of the Hartree–Fock method
,”
Phys. Rev.
81
,
385
390
(
1951
).
6.
U.
von Barth
and
L.
Hedin
, “
A local exchange-correlation potential for the spin polarized case: I
,”
J. Phys. C: Solid State Phys.
5
,
1629
1642
(
1972
).
7.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
, “
Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis
,”
Can. J. Phys.
58
,
1200
1211
(
1980
).
8.
J. P.
Perdew
and
Y.
Wang
, “
Accurate and simple analytic representation of the electron-gas correlation energy
,”
Phys. Rev. B
45
,
13244
13249
(
1992
).
9.
J. P.
Perdew
, “
Accurate density functional for the energy: Real-space cutoff of the gradient expansion for the exchange hole
,”
Phys. Rev. Lett.
55
,
1665
1668
(
1985
).
10.
J. P.
Perdew
and
W.
Yue
, “
Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation
,”
Phys. Rev. B
33
,
8800
8802
(
1986
).
11.
J. P.
Perdew
, “
Density-functional approximation for the correlation energy of the inhomogeneous electron gas
,”
Phys. Rev. B
33
,
8822
8824
(
1986
).
12.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
3100
(
1988
).
13.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
14.
B.
Miehlich
,
A.
Savin
,
H.
Stoll
, and
H.
Preuss
, “
Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr
,”
Chem. Phys. Lett.
157
,
200
206
(
1989
).
15.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
16.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
, “
Rationale for mixing exact exchange with density functional approximations
,”
J. Chem. Phys.
105
,
9982
9985
(
1996
).
17.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
18.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Phys. Chem.
110
,
6158
6170
(
1999
).
19.
A.
Savin
and
H.-J.
Flad
, “
Density functionals for the Yukawa electron-electron interaction
,”
Int. J. Quantum Chem.
56
,
327
332
(
1995
).
20.
J.
Toulouse
,
F.
Colonna
, and
A.
Savin
, “
Long-range-short-range separation of the electron-electron interaction in density-functional theory
,”
Phys. Rev. A
70
,
062505
(
2004
).
21.
H.
Iikura
,
T.
Tsuneda
,
T.
Yanai
, and
K.
Hirao
, “
A long-range correction scheme for generalized-gradient-approximation exchange functionals
,”
J. Chem. Phys.
115
,
3540
3544
(
2001
).
22.
Y.
Tawada
,
T.
Tsuneda
,
S.
Yanagisawa
,
T.
Yanai
, and
K.
Hirao
, “
A long-range-corrected time-dependent density functional theory
,”
J. Chem. Phys.
120
,
8425
8433
(
2004
).
23.
J. P.
Perdew
and
K.
Schmidt
,
Density Functional Theory and Its Application to Materials
(
AIP
,
Melville, NY
,
2001
), pp.
1
20
.
24.
J.
Jaramillo
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Local hybrid functionals
,”
J. Chem. Phys.
118
,
1068
1073
(
2003
).
25.
T. M.
Henderson
,
B. G.
Janesko
, and
G. E.
Scuseria
, “
Range separation and local hybridization in density functional theory
,”
J. Phys. Chem. A
112
,
12530
12542
(
2008
).
26.
T. M.
Maier
,
A. V.
Arbuznikov
, and
M.
Kaupp
, “
Local hybrid functionals: Theory, implementation, and performance of an emerging new tool in quantum chemistry and beyond
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
9
,
e1378
(
2019
).
27.
M.
Kaupp
,
H.
Bahmann
, and
A. V.
Arbuznikov
, “
Local hybrid functionals: An assessment for thermochemical kinetics
,”
J. Chem. Phys.
127
,
194102
(
2007
).
28.
A. V.
Arbuznikov
and
M.
Kaupp
, “
Importance of the correlation contribution for local hybrid functionals: Range separation and self-interaction corrections
,”
J. Chem. Phys.
136
,
014111
(
2012
).
29.
A. V.
Arbuznikov
and
M.
Kaupp
, “
Towards improved local hybrid functionals by calibration of exchange-energy densities
,”
J. Chem. Phys.
141
,
204101
(
2014
).
30.
M.
Haasler
,
T. M.
Maier
,
R.
Grotjahn
,
S.
Gückel
,
A. V.
Arbuznikov
, and
M.
Kaupp
, “
A local hybrid functional with wide applicability and good balance between (de)localization and left-right correlation
,”
J. Chem. Theory Comput.
16
,
5645
5657
(
2020
).
31.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
, “
A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP)
,”
Chem. Phys. Lett.
393
,
51
57
(
2004
).
32.
J.-D.
Chai
and
M.
Head-Gordon
, “
Systematic optimization of long-range corrected hybrid density functionals
,”
J. Chem. Phys.
128
,
084106
(
2008
).
33.
N.
Mardirossian
and
M.
Head-Gordon
, “
ωB97X-V: A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy
,”
Phys. Chem. Chem. Phys.
16
,
9904
9924
(
2014
).
34.
N.
Mardirossian
and
M.
Head-Gordon
, “
ωB97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation
,”
J. Chem. Phys.
144
,
214110
(
2016
).
35.
A. D.
Becke
, “
Correlation energy of an inhomogeneous electron gas: A coordinate-space model
,”
J. Chem. Phys.
88
,
1053
1062
(
1988
).
36.
A. D.
Becke
and
M. R.
Roussel
, “
Exchange holes in inhomogeneous systems: A coordinate-space model
,”
Phys. Rev. A
39
,
3761
3767
(
1989
).
37.
A. D.
Becke
, “
Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing
,”
J. Chem. Phys.
104
,
1040
1046
(
1996
).
38.
T.
Van Voorhis
and
G. E.
Scuseria
, “
A novel form for the exchange-correlation energy functional
,”
J. Chem. Phys.
109
,
400
410
(
1998
).
39.
J. P.
Perdew
,
S.
Kurth
,
A.
Zupan
, and
P.
Blaha
, “
Accurate density functional with correct formal properties: A step beyond the generalized gradient approximation
,”
Phys. Rev. Lett.
82
,
2544
2547
(
1999
).
40.
J. P.
Perdew
,
S.
Kurth
,
A.
Zupan
, and
P.
Blaha
, “
Erratum: Accurate density functional with correct formal properties: A step beyond the generalized gradient approximation [Phys. Rev. Lett. 82, 2544 (1999)]
,”
Phys. Rev. Lett.
82
,
5179
(
1999
).
41.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
, “
Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and solids
,”
Phys. Rev. Lett.
91
,
146401
(
2003
).
42.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Strongly constrained and appropriately normed semilocal density functional
,”
Phys. Rev. Lett.
115
,
036402
(
2015
).
43.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
, “
Insights into current limitations of density functional theory
,”
Science
321
,
792
794
(
2008
).
44.
O. A.
Vydrov
,
G. E.
Scuseria
, and
J. P.
Perdew
, “
Tests of functionals for systems with fractional electron number
,”
J. Chem. Phys.
126
,
154109
(
2007
).
45.
A.
Ruzsinszky
,
J. P.
Perdew
,
G. I.
Csonka
,
O. A.
Vydrov
, and
G. E.
Scuseria
, “
Spurious fractional charge on dissociated atoms: Pervasive and resilient self-interaction error of common density functionals
,”
J. Chem. Phys.
125
,
194112
(
2006
).
46.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
5079
(
1981
).
47.
C.
Shahi
,
P.
Bhattarai
,
K.
Wagle
,
B.
Santra
,
S.
Schwalbe
,
T.
Hahn
,
J.
Kortus
,
K. A.
Jackson
,
J. E.
Peralta
,
K.
Trepte
 et al., “
Stretched or noded orbital densities and self-interaction correction in density functional theory
,”
J. Chem. Phys.
150
,
174102
(
2019
).
48.
F. G.
Cruz
,
K.-C.
Lam
, and
K.
Burke
, “
Exchange-correlation energy density from viral theorem
,”
J. Phys. Chem. A
102
,
4911
4917
(
1998
).
49.
J. P.
Perdew
,
A.
Ruzsinszky
,
J.
Tao
,
V. N.
Staroverov
,
G. E.
Scuseria
, and
G. I.
Csonka
, “
Prescription for the design and selection of density functional approximations: More constraint satisfaction with fewer fits
,”
J. Chem. Phys.
123
,
062201
(
2005
).
50.
S.
Grimme
, “
Semiempirical hybrid density functional with perturbative second-order correlation
,”
J. Chem. Phys.
124
,
034108
(
2006
).
51.
L.
Goerigk
and
S.
Grimme
, “
Double-hybrid density functionals
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
576
600
(
2014
).
52.
E.
Brémond
,
I.
Ciofini
,
J. C.
Sancho-García
, and
C.
Adamo
, “
Nonempirical double-hybrid functionals: An effective tool for chemists
,”
Acc. Chem. Res.
49
,
1503
1513
(
2016
).
53.
A. D.
Becke
, “
A real-space model of nondynamical correlation
,”
J. Chem. Phys.
119
,
2972
2977
(
2003
).
54.
A. D.
Becke
, “
Real-space post-Hartree–Fock correlation models
,”
J. Chem. Phys.
122
,
064101
(
2005
).
55.
A. D.
Becke
and
E. R.
Johnson
, “
A unified density-functional treatment of dynamical, nondynamical, and dispersion correlations
,”
J. Chem. Phys.
127
,
124108
(
2007
).
56.
T.
Schmidt
,
E.
Kraisler
,
A.
Makmal
,
L.
Kronik
, and
S.
Kümmel
, “
A self-interaction-free local hybrid functional: Accurate binding energies vis-à-vis accurate ionization potentials from Kohn–Sham eigenvalues
,”
J. Chem. Phys.
140
,
18A510
(
2014
).
57.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
, “
Fractional spins and static correlation error in density functional theory
,”
J. Chem. Phys.
129
,
121104
(
2008
).
58.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
, “
Discontinuous nature of the exchange-correlation functional in strongly correlated systems
,”
Phys. Rev. Lett.
102
,
066403
(
2009
).
59.
X. D.
Yang
,
A. H. G.
Patel
,
R. A.
Miranda-Quintana
,
F.
Heidar-Zadeh
,
C. E.
González-Espinoza
, and
P. W.
Ayers
, “
Communication: Two types of flat-planes conditions in density functional theory
,”
J. Chem. Phys.
145
,
031102
(
2016
).
60.
A. D.
Becke
, “
Density functionals for static, dynamical, and strong correlation
,”
J. Chem. Phys.
138
,
074109
(
2013
).
61.
J.
Kong
and
E.
Proynov
, “
Density functional model for nondynamic and strong correlation
,”
J. Chem. Theory Comput.
12
,
133
143
(
2016
).
62.
TURBOMOLE V7.5 2020: A development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.
63.
S. G.
Balasubramani
,
G. P.
Chen
,
S.
Coriani
,
M.
Diedenhofen
,
M. S.
Frank
,
Y. J.
Franzke
,
F.
Furche
,
R.
Grotjahn
,
M. E.
Harding
,
C.
Hättig
,
A.
Hellweg
,
B.
Helmich-Paris
,
C.
Holzer
,
U.
Huniar
,
M.
Kaupp
,
A.
Marefat Khah
,
S.
Karbalaei Khani
,
T.
Müller
,
F.
Mack
,
B. D.
Nguyen
,
S. M.
Parker
,
E.
Perlt
,
D.
Rappoport
,
K.
Reiter
,
S.
Roy
,
M.
Rückert
,
G.
Schmitz
,
M.
Sierka
,
E.
Tapavicza
,
D. P.
Tew
,
C.
van Wüllen
,
V. K.
Voora
,
F.
Weigend
,
A.
Wodyński
, and
J. M.
Yu
, “
TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations
,”
J. Chem. Phys.
152
,
184107
(
2020
).
64.
A.
Patra
,
S.
Jana
,
H.
Myneni
, and
P.
Samal
, “
Laplacian free and asymptotic corrected semilocal exchange potential applied to the band gap of solids
,”
Phys. Chem. Chem. Phys.
21
,
19639
19650
(
2019
).
65.
A. D.
Becke
, “
Thermochemical tests of a kinetic-energy dependent exchange-correlation approximation
,”
Int. J. Quantum Chem.
52
,
625
632
(
1994
).
66.
O.
Gunnarsson
and
B. I.
Lundqvist
, “
Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism
,”
Phys. Rev. B
13
,
4274
4298
(
1976
).
67.
D. C.
Langreth
and
J. P.
Perdew
, “
Exchange-correlation energy of a metallic surface: Wave-vector analysis
,”
Phys. Rev. B
15
,
2884
2901
(
1977
).
68.
J.
Harris
, “
Adiabatic-connection approach to Kohn-Sham theory
,”
Phys. Rev. A
29
,
1648
1659
(
1984
).
69.
A. M.
Teale
,
S.
Coriani
, and
T.
Helgaker
, “
Accurate calculation and modeling of the adiabatic connection in density functional theory
,”
J. Chem. Phys.
132
,
164115
(
2010
).
70.
A.
Seshaditya
,
Assessment and Contributions to Local Hybrid Functionals
(
TU Berlin
,
Berlin
,
2018
).
71.
A. D.
Becke
, “
A new mixing of Hartree–Fock and local density-functional theories
,”
J. Chem. Phys.
98
,
1372
1377
(
1993
).
72.
M.
Fuchs
,
Y.-M.
Niquet
,
X.
Gonze
, and
K.
Burke
, “
Describing static correlation in bond dissociation by Kohn–Sham density functional theory
,”
J. Chem. Phys.
122
,
094116
(
2005
).
73.
F. L.
Hirshfeld
, “
Bonded-atom fragments for describing molecular charge densities
,”
Theor. Chim. Acta
44
,
129
138
(
1977
).
74.
A. D.
Becke
, “
A multicenter numerical integration scheme for polyatomic molecules
,”
J. Chem. Phys.
88
,
2547
2553
(
1988
).
75.
E.
Proynov
,
F.
Liu
,
Y.
Shao
, and
J.
Kong
, “
Improved self-consistent and resolution-of-identity approximated Becke’05 density functional model of nondynamic electron correlation
,”
J. Chem. Phys.
136
,
034102
(
2012
).
76.
A. V.
Arbuznikov
and
M.
Kaupp
, “
On the self-consistent implementation of general occupied-orbital dependent exchange-correlation functionals with application to the B05 functional
,”
J. Chem. Phys.
131
,
084103
(
2009
).
77.
HSL: A collection of Fortran codes for large-scale scientific computation, 2020. Available from http://www.cse.clrc.ac.uk/nag/hsl/.
78.
J. D.
Pryce
and
J. K.
Reid
,
AD01, a Fortran 90 Code for Automatic Differentiation
(
Rutherford Appleton Laboratory
,
Chilton, Oxfordshire, England
,
1998
).
79.
H.
Bahmann
and
M.
Kaupp
, “
Efficient self-consistent implementation of local hybrid functionals
,”
J. Chem. Theory Comput.
11
,
1540
1548
(
2015
).
80.
P.
Plessow
and
F.
Weigend
, “
Seminumerical calculation of the Hartree–Fock exchange matrix: Application to two-component procedures and efficient evaluation of local hybrid density functionals
,”
J. Comput. Chem.
33
,
810
816
(
2012
).
81.
F.
Neese
,
F.
Wennmohs
,
A.
Hansen
, and
U.
Becker
, “
Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange
,”
Chem. Phys.
356
,
98
109
(
2009
).
82.
D.
Rappoport
and
F.
Furche
, “
Property-optimized Gaussian basis sets for molecular response calculations
,”
J. Chem. Phys.
133
,
134105
(
2010
).
83.
F.
Weigend
, “
Accurate Coulomb-fitting basis sets for H to Rn
,”
Phys. Chem. Chem. Phys.
8
,
1057
1065
(
2006
).
84.
K.
Eichkorn
,
O.
Treutler
,
H.
Öhm
,
M.
Häser
, and
R.
Ahlrichs
, “
Auxiliary basis sets to approximate Coulomb potentials
,”
Chem. Phys. Lett.
240
,
283
290
(
1995
).
85.
F.
Weigend
, “
A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency
,”
Phys. Chem. Chem. Phys.
4
,
4285
4291
(
2002
).
86.
H.
Bahmann
,
A.
Rodenberg
,
A. V.
Arbuznikov
, and
M.
Kaupp
, “
A thermochemically competitive local hybrid functional without gradient corrections
,”
J. Chem. Phys.
126
,
011103
(
2007
).
87.
E. R.
Johnson
and
A. D.
Becke
, “
Communication: DFT treatment of strong correlation in 3d transition-metal diatomics
,”
J. Chem. Phys.
146
,
211105
(
2017
).
88.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
, “
Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields
,”
J. Phys. Chem.
98
,
11623
11627
(
1994
).
89.
J. A.
Pople
,
M.
Head‐Gordon
,
D. J.
Fox
,
K.
Raghavachari
, and
L. A.
Curtiss
, “
Gaussian-1 theory: A general procedure for prediction of molecular energies
,”
J. Chem. Phys.
90
,
5622
5629
(
1989
).
90.
L. A.
Curtiss
,
C.
Jones
,
G. W.
Trucks
,
K.
Raghavachari
, and
J. A.
Pople
, “
Gaussian-1 theory of molecular energies for second-row compounds
,”
J. Chem. Phys.
93
,
2537
2545
(
1990
).
91.
Y.
Zhao
,
N.
González-García
, and
D. G.
Truhlar
, “
Benchmark database of barrier heights for heavy atom transfer, nucleophilic substitution, association, and unimolecular reactions and its use to test theoretical methods
,”
J. Phys. Chem. A
109
,
2012
2018
(
2005
).
92.
Y.
Zhao
,
B. J.
Lynch
, and
D. G.
Truhlar
, “
Multi-coefficient extrapolated density functional theory for thermochemistry and thermochemical kinetics
,”
Phys. Chem. Chem. Phys.
7
,
43
52
(
2005
).
93.
A.
Karton
,
S.
Daon
, and
J. M. L.
Martin
, “
W4-11: A high-confidence benchmark dataset for computational thermochemistry derived from first-principles W4 data
,”
Chem. Phys. Lett.
510
,
165
178
(
2011
).
94.
M.
Wang
,
D.
John
,
J.
Yu
,
E.
Proynov
,
F.
Liu
,
B. G.
Janesko
, and
J.
Kong
, “
Performance of new density functionals of nondynamic correlation on chemical properties
,”
J. Chem. Phys.
150
,
204101
(
2019
).
95.
H. S.
Yu
,
X.
He
,
S. L.
Li
, and
D. G.
Truhlar
, “
MN15: A Kohn–Sham global-hybrid exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions
,”
Chem. Sci.
7
,
5032
5051
(
2016
).
96.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
, “
Many-electron self-interaction error in approximate density functionals
,”
J. Chem. Phys.
125
,
201102
(
2006
).
97.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
, “
Self-interaction-free exchange-correlation functional for thermochemistry and kinetics
,”
J. Chem. Phys.
124
,
091102
(
2006
).
98.
B. G.
Janesko
,
E.
Proynov
,
J.
Kong
,
G.
Scalmani
, and
M. J.
Frisch
, “
Practical density functionals beyond the overdelocalization–underbinding zero-sum game
,”
J. Phys. Chem. Lett.
8
,
4314
4318
(
2017
).
99.
E.
Proynov
and
J.
Kong
, “
Correcting the charge delocalization error of density functional theory
,”
J. Chem. Theory Comput.
17
,
4633
4638
(
2021
).
You do not currently have access to this content.