Collisional data for the excitation of NH by H2 are key to accurately derive the NH abundance in astrophysical media. We present a new four-dimensional potential energy surface (PES) for the NH–H2 van der Waals complex. The ab initio calculations of the PES were carried out using the explicitly correlated partially spin-restricted coupled cluster method with single, double, and perturbative triple excitations [RCCSD(T)-F12a] with the augmented correlation-consistent polarized valence triple zeta basis set. The PES was represented by an angular expansion in terms of coupled spherical harmonics. The global minimum corresponds to the linear structure with a well depth De = 149.10 cm−1. The calculated dissociation energy D0 is found to be 30.55 and 22.11 cm−1 for ortho-H2 and para-H2 complexes, respectively. These results are in agreement with the experimental values. Then, we perform quantum close-coupling calculations of the fine structure resolved excitation cross sections of NH induced by collisions with ortho-H2 and para-H2 for collisional energies up to 500 cm−1. We find strong differences between collisions induced by ortho-H2 and para-H2. Propensity rules are discussed. The cross sections are larger for fine structure conserving transitions than for fine structure changing ones, as predicted by theory. These new results should help in interpreting NH interstellar spectra and better constrain the abundance of NH in interstellar molecular clouds.

1.
C. A. R.
Sá de Melo
,
Phys. Today
61
(
10
),
45
(
2008
).
2.
E.
Roueff
and
F.
Lique
,
Chem. Rev.
113
,
8906
(
2013
).
3.
D.
Egorov
,
W. C.
Campbell
,
B.
Friedrich
,
S. E.
Maxwell
,
E.
Tsikata
,
L. D.
van Buuren
, and
J. M.
Doyle
,
Eur. Phys. J. D
31
,
307
(
2004
).
4.
R.
Ramachandran
,
J.
Kłos
, and
F.
Lique
,
J. Chem. Phys.
148
,
084311
(
2018
).
5.
F.
Dumouchel
,
J.
Kłos
,
R.
Toboła
,
A.
Bacmann
,
S.
Maret
,
P.
Hily-Blant
,
A.
Faure
, and
F.
Lique
,
J. Chem. Phys.
137
,
114306
(
2012
).
6.
R.
Toboła
,
F.
Dumouchel
,
J.
Kłos
, and
F.
Lique
,
J. Chem. Phys.
134
,
024305
(
2011
).
7.
N.
Bouhafs
and
F.
Lique
,
J. Chem. Phys.
143
,
184311
(
2015
).
8.
D.
Prudenzano
,
F.
Lique
,
R.
Ramachandran
,
L.
Bizzocchi
, and
P.
Caselli
,
J. Chem. Phys.
150
,
214302
(
2019
).
9.
P. J.
Dagdigian
,
J. Chem. Phys.
90
,
6110
(
1989
).
10.
D. M.
Meyer
and
K. C.
Roth
,
Astrophys. J., Lett.
376
,
L49
(
1991
).
11.
I. A.
Crawford
and
D. A.
Williams
,
Mon. Not. R. Astron. Soc.
291
,
L53
(
1997
).
12.
T.
Weselak
,
G. A.
Galazutdinov
,
Y.
Beletsky
, and
J.
Krełowski
,
Mon. Not. R. Astron. Soc.
400
,
392
(
2009
).
13.
A.
Bacmann
,
F.
Daniel
,
P.
Caselli
,
C.
Ceccarelli
,
D.
Lis
,
C.
Vastel
,
F.
Dumouchel
,
F.
Lique
, and
E.
Caux
,
Astron. Astrophys.
587
,
A26
(
2016
).
14.
R.
Wagenblast
,
D. A.
Williams
,
T. J.
Millar
, and
L. A. M.
Nejad
,
Mon. Not. R. Astron. Soc.
260
,
420
(
1993
).
15.
R.
Padash
and
S.
Ramazani
,
Mol. Astrophys.
20
,
100085
(
2020
).
16.
D. P.
Linder
,
X.
Duan
, and
M.
Page
,
J. Chem. Phys.
99
,
11458
(
1995
).
17.
W. M.
Fawzy
,
G.
Kerenskaya
, and
M. C.
Heaven
,
J. Chem. Phys.
122
,
144318
(
2005
).
18.
P. J.
Knowles
,
C.
Hampel
, and
H. J.
Werner
,
J. Chem. Phys.
99
,
5219
(
1993
).
19.
P. J.
Knowles
,
C.
Hampel
, and
H.-J.
Werner
,
J. Chem. Phys.
112
,
3106
(
2000
).
20.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
21.
K. P.
Huber
and
G.
Herzberg
,
Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules
(
Van Nostrand Reinhold
,
New York
,
1979
).
22.
G.
Knizia
,
T. B.
Adler
, and
H.-J.
Werner
,
J. Chem. Phys.
130
,
054104
(
2009
).
23.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al, molpro, version 2010.1, a package of ab initio programs,
2010
.
25.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
).
26.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
27.
K. A.
Peterson
,
D. E.
Woon
, and
T. H.
Dunning
,
J. Chem. Phys.
100
,
7410
(
1994
).
28.
D. E.
Manolopoulos
,
J. Chem. Phys.
85
,
6425
(
1986
).
29.
J. M.
Hutson
, Bound computer code, version 5, distributed by collaborative computational project No. 6 of the science and engineering research council (UK),
1993
.
30.
W.
Gordy
and
R. L.
Cook
,
Microwave Molecular Spectra
(
Wileys and Sons
,
1984
).
31.
F. D.
Wayne
and
H. E.
Radford
,
Mol. Phys.
32
,
1407
(
1976
).
32.
P. J.
Dagdigian
,
J. Chem. Phys.
150
,
084308
(
2019
).
33.
M. H.
Alexander
,
D. E.
Manolopoulos
,
H.-J.
Werner
,
B.
Follmeg
,
P. J.
Dagdigian
 et al, Hibridon is a package of programs for the time-independent quantum treatment of inelastic collisions and photodissociation, For more information and/or a copy of the code can be obtained from the website http://www2.chem.umd.edu/groups/alexander/hibridon,
2012
.
34.
I. F.
Silvera
,
Rev. Mod. Phys.
52
,
393
(
1980
).
35.
K. M.
Christoffel
and
J. M.
Bowman
,
J. Chem. Phys.
78
,
3952
(
1983
).
36.
L. N.
Smith
,
D. J.
Malik
, and
D.
Secrest
,
J. Chem. Phys.
71
,
4502
(
1979
).
37.
M. H.
Alexander
and
P. J.
Dagdigian
,
J. Chem. Phys.
79
,
302
(
1983
).
38.
Y.
Kalugina
,
J.
Kłos
, and
F.
Lique
,
J. Chem. Phys.
139
,
074301
(
2013
).
39.
B.
Desrousseaux
,
E.
Quintas-Sánchez
,
R.
Dawes
,
S.
Marinakis
, and
F.
Lique
,
J. Chem. Phys.
154
,
034304
(
2021
).
40.
M.
Lanza
and
F.
Lique
,
J. Chem. Phys.
141
,
164321
(
2014
).

Supplementary Material

You do not currently have access to this content.