The protonated HCl dimer and trimer complexes were prepared by pulsed discharges in supersonic expansions of helium or argon doped with HCl and hydrogen. The ions were mass selected in a reflectron time-of-flight spectrometer and investigated with photodissociation spectroscopy in the IR and near-IR regions. Anharmonic vibrational frequencies were computed with VPT2 at the MP2/cc-pVTZ level of theory. The Cl–H stretching fundamentals and overtones were measured in addition to stretch–torsion combinations. VPT2 theory at this level confirms the proton-bound structure of the dimer complex and provides a reasonably good description of the anharmonic vibrations in this system. The trimer has a HCl–HClH+–ClH structure in which a central chloronium ion is solvated by two HCl molecules via hydrogen bonding. VPT2 reproduces anharmonic frequencies for this system, including several combinations involving core ion Cl–H stretches, but fails to describe the relative band intensities.

1.
M. A.
Haney
and
J. L.
Franklin
, “
Mass spectrometric determination of the proton affinities of various molecules
,”
J. Phys. Chem.
73
,
4328
(
1969
).
2.
C. W.
Polley
and
B.
Munson
, “
The proton affinities of the halogen acids
,”
Int. J. Mass Spectrom. Ion Phys.
26
,
49
(
1978
).
3.
K.
Kawaguchi
and
E.
Hirota
, “
Magnetic field modulated infrared laser spectroscopy of the chloronium ClH2+ ion ν2 band
,”
J. Chem. Phys.
85
,
6910
(
1986
).
4.
S. K.
Lee
,
T.
Amano
,
K.
Kawaguchi
, and
M.
Oldani
, “
Difference-frequency laser spectroscopy of the ν1 and ν3 fundamental bands of H2Cl+: Determination of the equilibrium molecular structure
,”
J. Mol. Spectrosc.
130
,
1
(
1988
).
5.
S.
Saito
,
S.
Yamamoto
, and
K.
Kawaguchi
, “
The microwave spectrum of the H2Cl+ ion
,”
J. Chem. Phys.
88
,
2281
(
1988
).
6.
D. A.
Neufeld
and
M. G.
Wolfire
, “
The chemistry of interstellar molecules containing the halogen elements
,”
Astrophys. J.
706
,
1594
(
2009
).
7.
D. C.
Lis
,
J. C.
Pearson
,
D. A.
Neufeld
,
P.
Schilke
,
H. S. P.
Müller
,
H.
Gupta
,
T. A.
Bell
,
C.
Comito
,
T. G.
Phillips
,
E. A.
Bergin
,
C.
Ceccarelli
,
P. F.
Goldsmith
,
G. A.
Blake
,
A.
Bacmann
,
A.
Baudry
,
M.
Benedettini
,
A.
Benz
,
J.
Black
,
A.
Boogert
,
S.
Bottinelli
,
S.
Cabrit
,
P.
Caselli
,
A.
Castets
,
E.
Caux
,
J.
Cernicharo
,
C.
Codella
,
A.
Coutens
,
N.
Crimier
,
N. R.
Crockett
,
F.
Daniel
,
K.
Demyk
,
C.
Dominic
,
M.-L.
Dubernet
,
M.
Emprechtinger
,
P.
Encrenaz
,
E.
Falgarone
,
A.
Fuente
,
M.
Gerin
,
T. F.
Giesen
,
J. R.
Goicoechea
,
F.
Helmich
,
P.
Hennebelle
,
T.
Henning
,
E.
Herbst
,
P.
Hily-Blant
,
Å.
Hjalmarson
,
D.
Hollenbach
,
T.
Jack
,
C.
Joblin
,
D.
Johnstone
,
C.
Kahane
,
M.
Kama
,
M.
Kaufman
,
A.
Klotz
,
W. D.
Langer
,
B.
Larsson
,
J.
Le Bourlot
,
B.
Lefloch
,
F.
Le Petit
,
D.
Li
,
R.
Liseau
,
S. D.
Lord
,
A.
Lorenzani
,
S.
Maret
,
P. G.
Martin
,
G. J.
Melnick
,
K. M.
Menten
,
P.
Morris
,
J. A.
Murphy
,
Z.
Nagy
,
B.
Nisini
,
V.
Ossenkopf
,
S.
Pacheco
,
L.
Pagani
,
B.
Parise
,
M.
Pérault
,
R.
Plume
,
S.-L.
Qin
,
E.
Roueff
,
M.
Salez
,
A.
Sandqvist
,
P.
Saraceno
,
S.
Schlemmer
,
K.
Schuster
,
R.
Snell
,
J.
Stutzki
,
A.
Tielens
,
N.
Trappe
,
F. F. S.
van der Tak
,
M. H. D.
van der Wiel
,
E.
van Dishoeck
,
C.
Vastel
,
S.
Viti
,
V.
Wakelam
,
A.
Walters
,
S.
Wang
,
F.
Wyrowski
,
H. W.
Yorke
,
S.
Yu
,
J.
Zmuidzinas
,
Y.
Delorme
,
J.-P.
Desbat
,
R.
Güsten
,
J.-M.
Krieg
, and
B.
Delforge
, “
Herschel/HIFI discovery of interstellar chloronium (H2Cl+)
,”
Astron. Astrophys.
521
,
L9
(
2010
).
8.
D. A.
Neufeld
,
E.
Roueff
,
R. L.
Snell
,
D.
Lis
,
A. O.
Benz
,
S.
Bruderer
,
J. H.
Black
,
M.
De Luca
,
M.
Gerin
,
P. F.
Goldsmith
,
H.
Gupta
,
N.
Indriolo
,
J.
Le Bourlot
,
F.
Le Petit
,
B.
Larsson
,
G. J.
Melnick
,
K. M.
Menten
,
R.
Monje
,
Z.
Nagy
,
T. G.
Phillips
,
A.
Sandqvist
,
P.
Sonnentrucker
,
F.
van der Tak
, and
M. G.
Wolfire
, “
Herschel observations of interstellar chloronium
,”
Astrophys. J.
748
,
37
(
2012
).
9.
M.
De Luca
,
H.
Gupta
,
D.
Neufeld
,
M.
Gerin
,
D.
Teyssier
,
B. J.
Drouin
,
J. C.
Pearson
,
D. C.
Lis
,
R.
Monje
,
T. G.
Phillips
,
J. R.
Goicoechea
,
B.
Godard
,
E.
Falgarone
,
A.
Coutens
, and
T. A.
Bell
, “
Herschel/HIFI discovery of HCl+ in the interstellar medium
,”
Astrophys. J.
751
,
L37
(
2012
).
10.
O.
Dopfer
,
D.
Roth
, and
J. P.
Maier
, “
Potential energy surface and infrared spectrum of the Ar–H2Cl+ ionic complex
,”
J. Chem. Phys.
113
,
120
(
2000
).
11.
D. C.
McDonald
,
J. P.
Wagner
, and
M. A.
Duncan
, “
Mid-/near-IR spectroscopy and anharmonic theory of the H2Cl+Ar cation complex
,”
Chem. Phys. Lett.
691
,
51
(
2018
).
12.
N.
Ohashi
and
A. S.
Pine
, “
High resolution spectrum of the HCl dimer
,”
J. Chem. Phys.
81
,
73
(
1984
).
13.
D. J.
Nesbitt
, “
High-resolution infrared spectroscopy of weakly bound molecular complexes
,”
J. Chem. Phys.
88
,
843
(
1988
).
14.
J. E.
Del Bene
and
I.
Shavitt
, “
A theoretical study of the neutral, protonated and deprotonated trimers of HF and HCl
,”
J. Mol. Struct.: THEOCHEM
234
,
499
(
1991
).
15.
M. D.
Schuder
,
C. M.
Lovejoy
,
R.
Lascola
, and
D. J.
Nesbitt
, “
High resolution, jet-cooled infrared spectroscopy of (HCl)2: Analysis of ν1 and ν2 HCl stretching fundamentals, interconversion tunneling, and mode-specific predissociation lifetimes
,”
J. Chem. Phys.
99
,
4346
(
1998
).
16.
Y.
Qiu
,
J. Z. H.
Zhang
, and
Z.
Bačić
, “
Six-dimensional quantum calculations of vibration-rotation-tunneling levels of ν1 and ν2 HCl-stretching excited (HCl)2
,”
J. Chem. Phys.
108
,
4804
(
1998
).
17.
M.
Fárník
and
D. J.
Nesbitt
, “
Intramolecular energy transfer between oriented chromophores: High-resolution infrared spectroscopy of HCl trimer
,”
J. Chem. Phys.
121
,
12386
(
2004
).
18.
A.
Gutberlet
,
G.
Schwaab
,
O.
Birer
,
M.
Masia
,
A.
Kaczmarek
,
H.
Forbert
,
M.
Havenith
, and
D.
Marx
, “
Aggregation-induced dissociation of HCl(H2O)4 below 1 K: the smallest drop of acid
,”
Science
324
,
1545
(
2009
).
19.
D.
Skvortsov
,
S. J.
Lee
,
M. Y.
Choi
, and
A. F.
Vilesov
, “
Hydrated HCl(H2O)1–3 in helium nanodroplets: Studies of free OH vibrational stretching modes
,”
J. Phys. Chem. A
113
,
7360
(
2009
).
20.
S. D.
Flynn
,
D.
Skvortsov
,
A. M.
Morrison
,
T.
Liang
,
M. Y.
Choi
,
G. E.
Douberly
, and
A. F.
Vilesov
, “
Infrared spectra of HCl–H2O clusters in helium nanodroplets
,”
J. Phys. Chem. Lett.
1
,
2233
(
2010
).
21.
A. M.
Morrison
,
S. D.
Flynn
,
T.
Liang
, and
G. E.
Douberly
, “
Infrared spectroscopy of (HCl)m(H2O)n clusters in helium nanodroplets: Definitive assignments in the HCl stretch region
,”
J. Phys. Chem. A
114
,
8090
(
2010
).
22.
M.
Letzner
,
S.
Gruen
,
D.
Habig
,
K.
Hanke
,
T.
Endres
,
P.
Nieto
,
G.
Schwaab
,
Ł.
Walewski
,
M.
Wollenhaupt
,
H.
Forbert
,
D.
Marx
, and
M.
Havenith
, “
High resolution spectroscopy of HCl-water clusters: IR bands of undissociated and dissociated clusters revealed
,”
J. Chem. Phys.
139
,
154304
(
2013
).
23.
A. K.
Samanta
,
Y.
Wang
,
J. S.
Mancini
,
J. M.
Bowman
, and
H.
Reisler
, “
Energetics and predissociation dynamics of small water, HCl, and mixed HCl-water clusters
,”
Chem. Rev.
116
,
4913
(
2016
).
24.
T.
Schindler
,
C.
Berg
,
G.
Niedner-Schatteburg
, and
V. E.
Bondybey
, “
Solvation of hydrochloric acid in protonated water clusters
,”
Chem. Phys. Lett.
229
,
57
(
1994
).
25.
S. A.
McLuckey
,
D.
Cameron
, and
R. G.
Cooks
, “
Proton affinities from dissociations of proton-bound dimers
,”
J. Am. Chem. Soc.
103
,
1313
(
1981
).
26.
J. W.
Larson
and
T. B.
McMahon
, “
Formation, thermochemistry, and relative stabilities of proton-bound dimers of oxygen n-donor bases from ion cyclotron resonance solvent-exchange equilibria measurements
,”
J. Am. Chem. Soc.
104
,
6255
(
1982
).
27.
W. Y.
Feng
,
M.
Goldenberg
, and
C.
Lifshitz
, “
Reactions of proton-bound dimers
,”
J. Am. Soc. Mass Spectrom.
5
,
695
(
1994
).
28.
R. G.
Ewing
,
G. A.
Eiceman
, and
J. A.
Stone
, “
Proton-bound cluster ions in ion mobility spectrometry
,”
Int. J. Mass Spectrom.
193
,
57
(
1999
).
29.
R. S.
Blake
,
P. S.
Monks
, and
A. M.
Ellis
, “
Proton-transfer reaction mass spectrometry
,”
Chem. Rev.
109
,
861
(
2009
).
30.
K. R.
Asmis
,
N. L.
Pivonka
,
G.
Santambrogio
,
M.
Brümmer
,
C.
Kaposta
,
D. M.
Neumark
, and
L.
Wöste
, “
Gas-phase infrared spectrum of the protonated water dimer
,”
Science
299
,
1375
(
2003
).
31.
J. M.
Headrick
,
E. G.
Diken
,
R. S.
Walters
,
N. I.
Hammer
,
R. A.
Christie
,
J.
Cui
,
E. M.
Myshakin
,
M. A.
Duncan
,
M. A.
Johnson
, and
K. D.
Jordan
, “
Spectral signatures of hydrated proton vibrations in water clusters
,”
Science
308
,
1765
(
2005
).
32.
J. M.
Headrick
,
J. C.
Bopp
, and
M. A.
Johnson
, “
Predissociation spectroscopy of the argon-solvated H5O2+ ‘zundel’ cation in the 1000–1900 cm−1 region
,”
J. Chem. Phys.
121
,
11523
(
2004
).
33.
E. G.
Diken
,
J. M.
Headrick
,
J. R.
Roscioli
,
J. C.
Bopp
,
M. A.
Johnson
, and
A. B.
McCoy
, “
Fundamental excitations of the shared proton in the H3O2 and H5O2+ complexes
,”
J. Phys. Chem. A
109
,
1487
(
2005
).
34.
N. I.
Hammer
,
E. G.
Diken
,
J. R.
Roscioli
,
M. A.
Johnson
,
E. M.
Myshakin
,
K. D.
Jordan
,
A. B.
McCoy
,
X.
Huang
,
J. M.
Bowman
, and
S.
Carter
, “
The vibrational predissociation spectra of the H5O2+·RGn (RG = Ar, Ne) clusters: Correlation of the solvent perturbations in the free OH shared proton transitions of the zundel ion
,”
J. Chem. Phys.
122
,
244301
(
2005
).
35.
T. D.
Fridgen
,
L.
MacAleese
,
P.
Maître
,
T. B.
McMahon
,
P.
Boissel
, and
J.
Lemaire
, “
Infrared spectra of homogeneous and heterogeneous proton-bound dimers in the gas phase
,”
Phys. Chem. Chem. Phys.
7
,
2747
(
2005
).
36.
T. D.
Fridgen
,
L.
MacAleese
,
T. B.
McMahon
,
J.
Lemaire
, and
P.
Maître
, “
Gas phase infrared multiple-photon dissociation spectra of methanol, ethanol and propanol proton-bound dimers, protonated propanol and the propanol/water proton-bound dimer
,”
Phys. Chem. Chem. Phys.
8
,
955
(
2006
).
37.
J. R.
Roscioli
,
L. R.
McCunn
, and
M. A.
Johnson
, “
Quantum structure of the intermolecular proton bond
,”
Science
316
,
249
(
2007
).
38.
T.
Pankewitz
,
A.
Lagutschenkov
,
G.
Niedner-Schatteburg
,
S. S.
Xantheas
, and
Y.-T.
Lee
, “
Infrared spectrum of NH4+ (H2O): Evidence for mode specific fragmentation
,”
J. Chem. Phys.
126
,
074307
(
2007
).
39.
K. R.
Asmis
,
Y.
Yang
,
G.
Santambrogio
,
M.
Brümmer
,
J. R.
Roscioli
,
L. R.
McCunn
,
M. A.
Johnson
, and
O.
Kühn
, “
Gas-phase infrared spectroscopy and multidimensional quantum calculations of the protonated ammonia dimer N2H7+
,”
Angew. Chem., Int. Ed.
46
,
8691
(
2007
).
40.
Y.
Yang
,
O.
Kühn
,
G.
Santambrogio
,
D. J.
Goebbert
, and
K. R.
Asmis
, “
Vibrational signatures of hydrogen bonding in the protonated ammonia clusters NH4+ (NH3)1–4
,”
J. Chem. Phys.
129
,
224302
(
2008
).
41.
G. H.
Gardenier
,
J. R.
Roscioli
, and
M. A.
Johnson
, “
Intermolecular proton binding in the presence of a large electric dipole: Ar-tagged vibrational predissociation spectroscopy of the CH3CN·H+·OH2 and CH3CN·D+·OD2 complexes
,”
J. Phys. Chem. A
112
,
12022
(
2008
).
42.
G. E.
Douberly
,
A. M.
Ricks
,
B. W.
Ticknor
, and
M. A.
Duncan
, “
The structure of protonated acetone and its dimer: Infrared photodissociation spectroscopy from 800–4000 cm−1
,”
Phys. Chem. Chem. Phys.
10
,
77
(
2008
).
43.
G. E.
Douberly
,
A. M.
Ricks
,
B. W.
Ticknor
, and
M. A.
Duncan
, “
The structure of protonated carbon dioxide clusters: Infrared photodissociation spectroscopy and ab initio calculations
,”
J. Phys. Chem. A
112
,
950
(
2008
).
44.
G. E.
Douberly
,
A. M.
Ricks
,
B. W.
Ticknor
,
W. C.
McKee
,
P. v. R.
Schleyer
, and
M. A.
Duncan
, “
Infrared photodissociation spectroscopy of protonated acetylene and its clusters
,”
J. Phys. Chem. A
112
,
1897
(
2008
).
45.
A. M.
Ricks
,
G. E.
Douberly
, and
M. A.
Duncan
, “
Infrared spectroscopy of the protonated nitrogen dimer: The complexity of shared proton vibrations
,”
J. Chem. Phys.
131
,
104312
(
2009
).
46.
T. C.
Cheng
,
B.
Bandyopadyay
,
Y.
Wang
,
S.
Carter
,
B. J.
Braams
, and
J. M.
Bowman
, and
M. A.
Duncan
, “
The shared proton mode lights up the infrared spectrum of fluxional cations H5+ and D5+
,”
J. Phys. Chem. Lett.
1
,
758
(
2010
).
47.
G. E.
Douberly
,
R. S.
Walters
,
J.
Cui
,
K. D.
Jordan
, and
M. A.
Duncan
, “
Infrared spectroscopy of small protonated water clusters H+(H2O)n (n = 2–5): Isomers, argon tagging and deuteration
,”
J. Phys. Chem. A
114
,
4570
(
2010
).
48.
B.
Bandyopadhyay
,
T. C.
Cheng
, and
M. A.
Duncan
, “
Proton sharing in hydronium-nitrogen clusters probed with infrared spectroscopy
,”
Int. J. Mass Spectrom.
297
,
124
(
2010
).
49.
T. C.
Cheng
,
L.
Jiang
,
K. R.
Asmis
,
Y.
Wang
,
J. M.
Bowman
,
A. M.
Ricks
, and
M. A.
Duncan
, “
Mid- and far-IR spectra of H5+ and D5+ compared to the predictions of anharmonic theory
,”
J. Phys. Chem. Lett.
3
,
3160
(
2012
).
50.
T. C.
Cheng
,
B.
Bandyopadhyay
,
J. D.
Mosley
, and
M. A.
Duncan
, “
IR spectroscopy of protonation in benzene–water nanoclusters: Hydronium, zundel, and eigen at a hydrophobic interface
,”
J. Am. Chem. Soc.
134
,
13046
(
2012
).
51.
D. C.
McDonald
,
D. T.
Mauney
,
D.
Leicht
,
J. H.
Marks
,
J. A.
Tan
,
J.-L.
Kuo
, and
M. A.
Duncan
, “
Trapping a proton in argon: Spectroscopy and theory of the proton-bound argon dimer and its solvation
,”
J. Chem. Phys.
145
,
231101
(
2016
).
52.
C. T.
Wolke
,
J. A.
Fournier
,
L. C.
Dzugan
,
M. R.
Fagiani
,
T. T.
Odbadrakh
,
H.
Knorke
,
K. D.
Jordan
,
A. B.
McCoy
,
K. R.
Asmis
, and
M. A.
Johnson
, “
Spectroscopic snapshots of the proton-transfer mechanism in water
,”
Science
354
,
1131
(
2016
).
53.
J. P.
Wagner
,
D. C.
McDonald
 II
, and
M. A.
Duncan
, “
Infrared spectroscopy of the astrophysically relevant protonated formaldehyde dimer
,”
J. Phys. Chem. A
122
,
192
(
2018
).
54.
J. P.
Wagner
,
D. C.
McDonald
 II
, and
M. A.
Duncan
, “
Spectroscopy of proton coordination with ethylenediamine
,”
J. Phys. Chem. A
122
,
5168
(
2018
).
55.
D. C.
McDonald
 II
,
J. P.
Wagner
,
A. B.
McCoy
, and
M. A.
Duncan
, “
Near-infrared spectroscopy of protonated water clusters: Higher elevations in the hydrogen bonding landscape
,”
J. Phys. Chem. Lett.
9
,
5664
(
2018
).
56.
P. R.
Franke
,
M. A.
Duncan
, and
G. E.
Douberly
, “
Infrared photodissociation spectroscopy and anharmonic vibrational study of the HO4+ molecular ion
,”
J. Chem. Phys.
152
,
174309
(
2020
).
57.
M. A.
Boyer
,
C. S.
Chiu
,
D. C.
McDonald
 II
,
J. P.
Wagner
,
J. E.
Colley
,
D. S.
Orr
,
M. A.
Duncan
, and
A. B.
McCoy
, “
The role of tunneling in the spectra of H5+ and D5+ up to 7300 cm−1
,”
J. Phys. Chem. A
124
,
4427
(
2020
).
58.
D.
Leicht
,
B. M.
Rittgers
,
G. E.
Douberly
,
J. P.
Wagner
,
D. C.
McDonald
,
D. T.
Mauney
,
M.
Tsuge
,
Y.-P.
Lee
, and
M. A.
Duncan
, “
Infrared spectroscopy of the H+(CO)2 ion in the gas phase and in para-hydrogen matrices
,”
J. Chem. Phys.
153
,
084305
(
2020
).
59.
J. P.
Wagner
,
D. C.
McDonald
 II
, and
M. A.
Duncan
, “
Near-infrared spectroscopy and anharmonic theory of the H2O+Ar1,2 cation complexes
,”
J. Chem. Phys.
147
,
104302
(
2017
).
60.
M. A.
Duncan
, “
Infrared laser spectroscopy of mass-selected carbocations
,”
J. Phys. Chem. A
116
,
11477
(
2012
).
61.
K.
LaiHing
,
P. Y.
Cheng
,
T. G.
Taylor
,
K. F.
Willey
,
M.
Peschke
, and
M. A.
Duncan
, “
Photodissociation in a reflectron time-of-flight mass spectrometer: A novel MS/MS scheme for high mass systems
,”
Anal. Chem.
61
,
1458
(
1989
).
62.
D. S.
Cornett
,
M.
Peschke
,
K.
LaiHing
,
P. Y.
Cheng
,
K. F.
Willey
, and
M. A.
Duncan
, “
A reflectron time-of-flight mass spectrometer for laser photodissociation
,”
Rev. Sci. Instrum.
63
,
2177
(
1992
).
63.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16, Revision C.01,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
64.
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
(
1989
).
65.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis-sets and wave-functions
,”
J. Chem. Phys.
96
,
6796
(
1992
).
66.
D. E.
Woon
and
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon
,”
J. Chem. Phys.
98
,
1358
(
1993
).
67.
T. H.
Dunning
,
K. A.
Peterson
, and
A. K.
Wilson
, “
Gaussian basis sets for use in correlated calculations. X. The atoms aluminum through argon revisited
,”
J. Chem. Phys.
114
,
9244
(
2001
).
68.
J. D.
Lewis
,
T. B.
Malloy
,
T. H.
Chao
, and
J.
Laane
, “
Periodic potential functions for pseudorotation and internal rotation
,”
J. Mol. Struct.
12
,
427
(
1972
).
69.
R.
Meyer
and
H. H.
Günthard
, “
General internal motion of molecules classical quantum-mechanical Hamiltonian
,”
J. Chem. Phys.
49
,
1510
(
1968
).

Supplementary Material

You do not currently have access to this content.