Superatom clusters, Au25(SR)18, and the silver analog and alloys of the two metals have been extensively investigated for their structure, stability, photoluminescence, and electronic properties. One can readily tune the physicochemical properties by varying the ratio of Au/Ag or the thiol ligand to attain desired properties, such as enhanced emission, increased stability, and catalytic activity. Herein, excitation emission matrix spectroscopy and pump–probe transient absorption spectroscopy are used to show that the excited state dynamics of Au25(SR)18, Ag25(SR)18, and their alloys differ significantly despite having similar structures. State-resolved excited state behavior that is well documented for gold clusters is largely affected by the metal composition, becoming less pronounced for silver analogs, resulting in diversity in terms of their excited state energy and relaxation dynamics and resultant photophysical properties, such as emission.

1.
A.
Corma
,
Nat. Nanotechnol.
9
,
412
413
(
2014
).
2.
M.
Haruta
,
Chem. Rec.
3
,
75
87
(
2003
).
3.
S.
Yamazoe
,
K.
Koyasu
, and
T.
Tsukuda
,
Acc. Chem. Res.
47
,
816
824
(
2014
).
4.
A.
Kogo
,
N.
Sakai
, and
T.
Tatsuma
,
Electrochem. Commun.
12
,
996
999
(
2010
).
5.
A.
Ghosh
,
T.
Udayabhaskararao
, and
T.
Pradeep
,
J. Phys. Chem. Lett.
3
,
1997
2002
(
2012
).
6.
X. L.
Guevel
,
O.
Tagit
,
C. E.
Rodríguez
,
V.
Trouillet
,
M. P.
Leal
, and
N.
Hildebrandt
,
Nanoscale
6
,
8091
8099
(
2014
).
7.
T.
Udaya Bhaskara Rao
and
T.
Pradeep
,
Angew. Chem., Int. Ed.
49
,
3925
3929
(
2010
).
8.
Y.
Yu
,
Z.
Luo
,
D. M.
Chevrier
,
D. T.
Leong
,
P.
Zhang
,
D.-e.
Jiang
, and
J.
Xie
,
J. Am. Chem. Soc.
136
,
1246
1249
(
2014
).
9.
M. J.
Kale
,
T.
Avanesian
, and
P.
Christopher
,
ACS Catal.
4
,
116
128
(
2014
).
10.
M. A.
Abbas
,
P. V.
Kamat
, and
J. H.
Bang
,
ACS Energy Lett.
3
,
840
854
(
2018
).
11.
B.
Corain
,
G.
Schmid
, and
N.
Toshima
,
Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control
(
Elsevier
,
2011
).
12.
M. W.
Heaven
,
A.
Dass
,
P. S.
White
,
K. M.
Holt
, and
R. W.
Murray
,
J. Am. Chem. Soc.
130
,
3754
3755
(
2008
).
13.
Y.
Song
,
J.
Zhong
,
S.
Yang
,
S.
Wang
,
T.
Cao
,
J.
Zhang
,
P.
Li
,
D.
Hu
,
Y.
Pei
, and
M.
Zhu
,
Nanoscale
6
,
13977
13985
(
2014
).
14.
A.
Tlahuice-Flores
,
R. L.
Whetten
, and
M.
Jose-Yacaman
,
J. Phys. Chem. C
117
,
20867
20875
(
2013
).
15.
C.
Yi
,
H.
Zheng
,
P. J.
Herbert
,
Y.
Chen
,
R.
Jin
, and
K. L.
Knappenberger
, Jr.
,
J. Phys. Chem. C
121
,
24894
24902
(
2017
).
16.
G.
Yousefalizadeh
and
K. G.
Stamplecoskie
,
J. Phys. Chem. A
122
,
7014
7022
(
2018
).
17.
T. D.
Green
,
C.
Yi
,
C.
Zeng
,
R.
Jin
,
S.
McGill
, and
K. L.
Knappenberger
, Jr.
,
J. Phys. Chem. A
118
,
10611
10621
(
2014
).
18.
P. J.
Herbert
and
K. L.
Knappenberger
, Jr.
,
Small
17
,
2004431
(
2021
).
19.
T.
Stoll
,
E.
Sgrò
,
J. W.
Jarrett
,
J.
Réhault
,
A.
Oriana
,
L.
Sala
,
F.
Branchi
,
G.
Cerullo
, and
K. L.
Knappenberger
,
J. Am. Chem. Soc.
138
,
1788
(
2016
).
20.
M.
Zhou
,
C.
Zeng
,
M. Y.
Sfeir
,
M.
Cotlet
,
K.
Iida
,
K.
Nobusada
, and
R.
Jin
,
J. Phys. Chem. Lett.
8
,
4023
4030
(
2017
).
21.
M.
Zhou
,
J.
Zhong
,
S.
Wang
,
Q.
Guo
,
M.
Zhu
,
Y.
Pei
, and
A.
Xia
,
J. Phys. Chem. C
119
,
18790
18797
(
2015
).
22.
P. J.
Herbert
,
M. A.
Tofanelli
,
C. J.
Ackerson
, and
K. L.
Knappenberger
, Jr.
,
J. Phys. Chem. C
125
,
7267
7275
(
2021
).
23.
C. P.
Joshi
,
M. S.
Bootharaju
,
M. J.
Alhilaly
, and
O. M.
Bakr
,
J. Am. Chem. Soc.
137
,
11578
11581
(
2015
).
24.
M.
Zhou
,
T.
Higaki
,
Y.
Li
,
C.
Zeng
,
Q.
Li
,
M. Y.
Sfeir
, and
R.
Jin
,
J. Am. Chem. Soc.
141
,
19754
(
2019
).
25.
B.
Molina
and
A.
Tlahuice-Flores
,
Phys. Chem. Chem. Phys.
18
,
1397
1403
(
2016
).
26.
H.
Qian
,
D.-e.
Jiang
,
G.
Li
,
C.
Gayathri
,
A.
Das
,
R. R.
Gil
, and
R.
Jin
,
J. Am. Chem. Soc.
134
,
16159
16162
(
2012
).
27.
A.
Ghosh
,
O. F.
Mohammed
, and
O. M.
Bakr
,
Acc. Chem. Res.
51
,
3094
3103
(
2018
).
28.
X.
Yuan
,
X.
Dou
,
K.
Zheng
, and
J.
Xie
,
Part. Part. Syst. Charact.
32
,
613
629
(
2015
).
29.
L. A.
Austin
,
M. A.
Mackey
,
E. C.
Dreaden
, and
M. A.
El-Sayed
,
Arch. Toxicol.
88
,
1391
1417
(
2014
).
30.
Q.
Li
,
S.
Wang
,
K.
Kirschbaum
,
K. J.
Lambright
,
A.
Das
, and
R.
Jin
,
Chem. Commun.
52
,
5194
5197
(
2016
).
31.
S.
Wang
,
X.
Meng
,
A.
Das
,
T.
Li
,
Y.
Song
,
T.
Cao
,
X.
Zhu
,
M.
Zhu
, and
R.
Jin
,
Angew. Chem.
126
,
2408
2412
(
2014
).
32.
T. D.
Green
and
K. L.
Knappenberger
,
Nanoscale
4
,
4111
4118
(
2012
).
33.
M. S.
Devadas
,
J.
Kim
,
E.
Sinn
,
D.
Lee
,
T.
Goodson
, and
G.
Ramakrishna
,
J. Phys. Chem. C
114
,
22417
22423
(
2010
).
34.
K. G.
Stamplecoskie
,
G.
Yousefalizadeh
,
L.
Gozdzialski
, and
H.
Ramsay
,
J. Phys. Chem. C
122
,
13738
13744
(
2018
).
35.
P.
Makuła
,
M.
Pacia
, and
W.
Macyk
,
J. Phys. Chem. Lett.
9
,
6814
(
2018
).
36.
J.
Ravensbergen
,
F. F.
Abdi
,
J. H.
van Santen
,
R. N.
Frese
,
B.
Dam
,
R.
van de Krol
, and
J. T. M.
Kennis
,
J. Phys. Chem. C
118
,
27793
27800
(
2014
).
37.
S.
Wang
,
X.
Zhu
,
T.
Cao
, and
M.
Zhu
,
Nanoscale
6
,
5777
5781
(
2014
).
38.
J.
Fang
,
B.
Zhang
,
Q.
Yao
,
Y.
Yang
,
J.
Xie
, and
N.
Yan
,
Coord. Chem. Rev.
322
,
1
29
(
2016
).
39.
M. S.
Bootharaju
,
C. P.
Joshi
,
M. R.
Parida
,
O. F.
Mohammed
, and
O. M.
Bakr
,
Angew. Chem., Int. Ed.
55
,
922
926
(
2016
).

Supplementary Material

You do not currently have access to this content.