Within periodic boundary conditions, the traditional quantum mechanical position operator is ill-defined, necessitating the use of alternative methods, most commonly the Berry phase formulation in the modern theory of polarization. Since any information about local properties is lost in this change of framework, the Berry phase formulation can only determine the total electric polarization of a system. Previous approaches toward recovering local electric dipole moments have been based on applying the conventional dipole moment operator to the centers of maximally localized Wannier functions (MLWFs). Recently, another approach to local electric dipole moments has been demonstrated in the field of subsystem density functional theory (DFT) embedding. We demonstrate in this work that this approach, aside from its use in ground state DFT-based molecular dynamics, can also be applied to obtain electric dipole moments during real-time propagated time-dependent DFT (RT-TDDFT). Moreover, we present an analogous approach to obtain local electric dipole moments from MLWFs, which enables subsystem analysis in cases where DFT embedding is not applicable. The techniques were implemented in the quantum chemistry software CP2K for the mixed Gaussian and plane wave method and applied to cis-diimide and water in the gas phase, cis-diimide in aqueous solution, and a liquid mixture of dimethyl carbonate and ethylene carbonate to obtain absorption and infrared spectra decomposed into localized subsystem contributions.

1.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
2.
D.
Marx
and
J.
Hutter
,
Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods
(
Cambridge University Press
,
2009
).
3.
R. D.
King-Smith
and
D.
Vanderbilt
,
Phys. Rev. B
47
,
1651
(
1993
).
4.
R.
Resta
,
Europhys. Lett.
22
,
133
(
1993
).
5.
D.
Vanderbilt
and
R. D.
King-Smith
,
Phys. Rev. B
48
,
4442
(
1993
).
6.
I.
Souza
,
J.
Íniguez
, and
D.
Vanderbilt
,
Phys. Rev. Lett.
89
,
117602
(
2002
).
7.
I.
Souza
,
J.
Íniguez
, and
D.
Vanderbilt
,
Phys. Rev. B
69
,
085106
(
2004
).
8.
S.
Ono
,
L.
Trifunovic
, and
H.
Watanabe
,
Phys. Rev. B
100
,
245133
(
2019
).
9.
N.
Marzari
and
D.
Vanderbilt
,
Phys. Rev. B
56
,
12847
(
1997
).
10.
I.
Souza
,
N.
Marzari
, and
D.
Vanderbilt
,
Phys. Rev. B
65
,
035109
(
2001
).
11.
N.
Marzari
,
A. A.
Mostofi
,
J. R.
Yates
,
I.
Souza
, and
D.
Vanderbilt
,
Rev. Mod. Phys.
84
,
1419
(
2012
).
12.
S.
Luber
,
J. Chem. Phys.
141
,
234110
(
2014
).
13.
R. G.
Gordon
and
Y. S.
Kim
,
J. Chem. Phys.
56
,
3122
(
1972
).
14.
R.
Gordon
and
Y.
Kim
,
J. Chem. Phys.
60
,
1842
(
1974
).
15.
G.
Senatore
and
K. R.
Subbaswamy
,
Phys. Rev. B
34
,
5754
(
1986
).
16.
P.
Cortona
,
Phys. Rev. B
44
,
8454
(
1991
).
17.
T. A.
Wesolowski
and
A.
Warshel
,
J. Phys. Chem.
97
,
8050
(
1993
).
18.
M. E.
Casida
and
T. A.
Wesołowski
,
Int. J. Quantum Chem.
96
,
577
(
2004
).
19.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
20.
E.
Runge
and
E. K. U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
21.
C. A.
Ullrich
,
Time-Dependent Density-Functional Theory: Concepts and Applications
(
OUP
,
Oxford
,
2011
).
22.
M.
Marques
,
A.
Rubio
,
E. K.
Gross
,
K.
Burke
,
F.
Nogueira
, and
C. A.
Ullrich
,
Time-Dependent Density Functional Theory
(
Springer Science & Business Media
,
2006
), Vol. 706.
23.
K.
Lopata
and
N.
Govind
,
J. Chem. Theory Comput.
7
,
1344
(
2011
).
24.
W.
Liang
,
C. T.
Chapman
, and
X.
Li
,
J. Chem. Phys.
134
,
184102
(
2011
).
25.
M.
Casida
,
Recent Developments and Applications in Modern Density Functional Theory
(
Elsevier
,
1996
), Vol. 4.
26.
M. E.
Casida
,
C.
Jamorski
,
K. C.
Casida
, and
D. R.
Salahub
,
J. Chem. Phys.
108
,
4439
(
1998
).
27.
R. E.
Stratmann
,
G. E.
Scuseria
, and
M. J.
Frisch
,
J. Chem. Phys.
109
,
8218
(
1998
).
28.
D. C.
Yost
,
Y.
Yao
, and
Y.
Kanai
,
J. Chem. Phys.
150
,
194113
(
2019
).
29.
R. P.
Futrelle
and
D. J.
McGinty
,
Chem. Phys. Lett.
12
,
285
(
1971
).
30.
See http://www.cp2k.org/ for Cp2k; accessed 04-12-2020.
31.
F.
Gygi
,
J.-L.
Fattebert
, and
E.
Schwegler
,
Comput. Phys. Commun.
155
,
1
(
2003
).
32.
A.
Schleife
,
E. W.
Draeger
,
Y.
Kanai
, and
A. A.
Correa
,
J. Chem. Phys.
137
,
22A546
(
2012
).
33.
F.
Gygi
,
IBM J. Res. Dev.
52
,
137
(
2008
).
34.
S.
Baroni
,
S.
De Gironcoli
,
A.
Dal Corso
, and
P.
Giannozzi
,
Rev. Mod. Phys.
73
,
515
(
2001
).
35.
E.
Yaschenko
,
L.
Fu
,
L.
Resca
, and
R.
Resta
,
Phys. Rev. B
58
,
1222
(
1998
).
36.
G.
Berghold
,
C. J.
Mundy
,
A. H.
Romero
,
J.
Hutter
, and
M.
Parrinello
,
Phys. Rev. B
61
,
10040
(
2000
).
37.
W. A.
Benalcazar
,
B. A.
Bernevig
, and
T. L.
Hughes
,
Science
357
,
61
(
2017
).
38.
W. A.
Benalcazar
,
B. A.
Bernevig
, and
T. L.
Hughes
,
Phys. Rev. B
96
,
245115
(
2017
).
39.
F.
Bloch
,
Z. Phys.
52
,
555
(
1929
).
40.
J. M.
Foster
and
S. F.
Boys
,
Rev. Mod. Phys.
32
,
300
(
1960
).
41.
R.
Resta
,
Phys. Rev. Lett.
80
,
1800
(
1998
).
42.
T. A.
Wesolowski
,
S.
Shedge
, and
X.
Zhou
,
Chem. Rev.
115
,
5891
(
2015
).
43.
C.
Huang
,
M.
Pavone
, and
E. A.
Carter
,
J. Chem. Phys.
134
,
154110
(
2011
).
44.
Q.
Wu
and
W.
Yang
,
J. Chem. Phys.
118
,
2498
(
2003
).
45.
J.
Kolafa
,
J. Comput. Chem.
25
,
335
(
2004
).
46.
M.
Iannuzzi
,
B.
Kirchner
, and
J.
Hutter
,
Chem. Phys. Lett.
421
,
16
(
2006
).
47.
M. E.
Fornace
,
J.
Lee
,
K.
Miyamoto
,
F. R.
Manby
, and
T. F.
Miller
 III
,
J. Chem. Theory Comput.
11
,
568
(
2015
).
48.
A.
Krishtal
,
D.
Ceresoli
, and
M.
Pavanello
,
J. Chem. Phys.
142
,
154116
(
2015
).
49.
K. J.
Koh
,
T. S.
Nguyen-Beck
, and
J.
Parkhill
,
J. Chem. Theory Comput.
13
,
4173
(
2017
).
50.
F.
Ding
,
F. R.
Manby
, and
T. F.
Miller
 III
,
J. Chem. Theory Comput.
13
,
1605
(
2017
).
51.
M.
De Santis
,
L.
Belpassi
,
C. R.
Jacob
,
A.
Severo Pereira Gomes
,
F.
Tarantelli
,
L.
Visscher
, and
L.
Storchi
,
J. Chem. Theory Comput.
16
,
5695
(
2020
).
52.
S.
Andermatt
,
J.
Cha
,
F.
Schiffmann
, and
J.
VandeVondele
,
J. Chem. Theory Comput.
12
,
3214
(
2016
).
53.
A.
Krishtal
,
D.
Sinha
,
A.
Genova
, and
M.
Pavanello
,
J. Phys.: Condens. Matter
27
,
183202
(
2015
).
54.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
,
Phys. Rev. B
54
,
1703
(
1996
).
55.
C.
Hartwigsen
,
S.
Goedecker
, and
J.
Hutter
,
Phys. Rev. B
58
,
3641
(
1998
).
56.
M.
Krack
,
Theor. Chem. Acc.
114
,
145
(
2005
).
57.
A.
Castro
,
M. A. L.
Marques
, and
A.
Rubio
,
J. Chem. Phys.
121
,
3425
(
2004
).
58.
J.
Mattiat
and
S.
Luber
,
J. Chem. Phys.
149
,
174108
(
2018
).
59.
J.
Mattiat
and
S.
Luber
,
Chem. Phys.
527
,
110464
(
2019
).
60.
J.
Mattiat
and
S.
Luber
,
J. Chem. Phys.
151
,
234110
(
2019
).
61.
J.
Mattiat
and
S.
Luber
,
J. Chem. Theory Comput.
17
,
344
(
2020
).
62.
P.
Virtanen
,
R.
Gommers
,
T. E.
Oliphant
,
M.
Haberland
,
T.
Reddy
,
D.
Cournapeau
,
E.
Burovski
,
P.
Peterson
,
W.
Weckesser
,
J.
Bright
,
S. J.
van der Walt
,
M.
Brett
,
J.
Wilson
,
K. J.
Millman
,
N.
Mayorov
,
A. R. J.
Nelson
,
E.
Jones
,
R.
Kern
,
E.
Larson
,
C. J.
Carey
,
İ.
Polat
,
Y.
Feng
,
E. W.
Moore
,
J.
VanderPlas
,
D.
Laxalde
,
J.
Perktold
,
R.
Cimrman
,
I.
Henriksen
,
E. A.
Quintero
,
C. R.
Harris
,
A. M.
Archibald
,
A. H.
Ribeiro
,
F.
Pedregosa
,
P.
van Mulbregt
, and
SciPy 1.0 Contributors
,
Nat. Methods
17
,
261
(
2020
).
63.
J. D.
Hunter
,
Comput. Sci. Eng.
9
,
90
(
2007
).
64.
M.
Thomas
,
M.
Brehm
,
R.
Fligg
,
P.
Vöhringer
, and
B.
Kirchner
,
Phys. Chem. Chem. Phys.
15
,
6608
(
2013
).
65.
K.
Yabana
and
G. F.
Bertsch
,
Int. J. Quantum Chem.
75
,
55
(
1999
).
66.
C.
Eckart
,
Phys. Rev.
47
,
552
(
1935
).
67.
C. F.
Van Loan
and
G. H.
Golub
,
Matrix Computations
(
Johns Hopkins University Press
,
Baltimore, MA
,
1983
).
68.
J.-F.
Cardoso
and
A.
Souloumiac
,
SIAM J. Matrix Anal. Appl.
17
,
161
(
1996
).
69.
E.
Anderson
,
Z.
Bai
,
C.
Bischof
,
S.
Blackford
,
J.
Demmel
,
J.
Dongarra
,
J.
Du Croz
,
A.
Greenbaum
,
S.
Hammarling
,
A.
McKenney
, and
D.
Sorensen
,
LAPACK Users’ Guide
, 3rd ed. (
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
,
1999
).
70.
Z.
Xianyi
and
M.
Kroeker
, OpenBLAS: An optimized BLAS library.
71.
Intel Corporation, Intel® Math Kernel Library.
72.
L.
Blackford
,
J.
Choi
,
A.
Cleary
,
E.
D’Azevedo
,
J.
Demmel
,
I.
Dhillon
,
J.
Dongarra
,
S.
Hammarling
,
G.
Henry
,
A.
Petitet
,
K.
Stanley
,
D.
Walker
, and
R. C.
Whaley
,
ScaLAPACK Users’ Guide
(
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
,
1997
).
73.
P.
Linstrom
, NIST Chemistry Webbook, NIST Standard Reference Database 69,
1997
.
74.
M. J.
van Setten
,
F.
Caruso
,
S.
Sharifzadeh
,
X.
Ren
,
M.
Scheffler
,
F.
Liu
,
J.
Lischner
,
L.
Lin
,
J. R.
Deslippe
,
S. G.
Louie
,
C.
Yang
,
F.
Weigend
,
J. B.
Neaton
,
F.
Evers
, and
P.
Rinke
,
J. Chem. Theory Comput.
11
,
5665
(
2015
).
75.
A.
Genova
,
D.
Ceresoli
, and
M.
Pavanello
,
J. Chem. Phys.
144
,
234105
(
2016
).

Supplementary Material

You do not currently have access to this content.