Double Core-Hole (DCH) states of small molecules are assessed with the restricted active space self-consistent field and multi-state restricted active space perturbation theory of second order approximations. To ensure an unbiased description of the relaxation and correlation effects on the DCH states, the neutral ground-state and DCH wave functions are optimized separately, whereas the spectral intensities are computed with a biorthonormalized set of molecular orbitals within the state-interaction approximation. Accurate shake-up satellite binding energies and intensities of double-core-ionized states (K−2) are obtained for H2O, N2, CO, and C2H2n (n = 1–3). The results are analyzed in detail and show excellent agreement with recent theoretical and experimental data. The K−2 shake-up spectra of H2O and C2H2n molecules are here completely characterized for the first time.

1.
N.
Berrah
,
L.
Fang
,
B.
Murphy
,
T.
Osipov
,
K.
Ueda
,
E.
Kukk
,
R.
Feifel
,
P.
van der Meulen
,
P.
Salen
,
H. T.
Schmidt
,
R. D.
Thomas
,
M.
Larsson
,
R.
Richter
,
K. C.
Prince
,
J. D.
Bozek
,
C.
Bostedt
,
S.-i.
Wada
,
M. N.
Piancastelli
,
M.
Tashiro
, and
M.
Ehara
, “
Double-core-hole spectroscopy for chemical analysis with an intense X-ray femtosecond laser
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
16912
16915
(
2011
).
2.
P.
Salén
,
P.
van der Meulen
,
H. T.
Schmidt
,
R. D.
Thomas
,
M.
Larsson
,
R.
Feifel
,
M. N.
Piancastelli
,
L.
Fang
,
B.
Murphy
,
T.
Osipov
,
N.
Berrah
,
E.
Kukk
,
K.
Ueda
,
J. D.
Bozek
,
C.
Bostedt
,
S.
Wada
,
R.
Richter
,
V.
Feyer
, and
K. C.
Prince
, “
Experimental verification of the chemical sensitivity of two-site double core-hole states formed by an X-ray free-electron laser
,”
Phys. Rev. Lett.
108
,
153003
(
2012
).
3.
M.
Larsson
,
P.
Salén
,
P.
van der Meulen
,
H. T.
Schmidt
,
R. D.
Thomas
,
R.
Feifel
,
M. N.
Piancastelli
,
L.
Fang
,
B. F.
Murphy
,
T.
Osipov
,
N.
Berrah
,
E.
Kukk
,
K.
Ueda
,
J. D.
Bozek
,
C.
Bostedt
,
S.
Wada
,
R.
Richter
,
V.
Feyer
, and
K. C.
Prince
, “
Double core-hole formation in small molecules at the LCLS free electron laser
,”
J. Phys. B: At., Mol. Opt. Phys.
46
,
164030
(
2013
).
4.
V.
Zhaunerchyk
,
M.
Mucke
,
P.
Salén
,
P.
van der Meulen
,
M.
Kaminska
,
R. J.
Squibb
,
L. J.
Frasinski
,
M.
Siano
,
J. H. D.
Eland
,
P.
Linusson
,
R. D.
Thomas
,
M.
Larsson
,
L.
Foucar
,
J.
Ullrich
,
K.
Motomura
,
S.
Mondal
,
K.
Ueda
,
T.
Osipov
,
L.
Fang
,
B. F.
Murphy
,
N.
Berrah
,
C.
Bostedt
,
J. D.
Bozek
,
S.
Schorb
,
M.
Messerschmidt
,
J. M.
Glownia
,
J. P.
Cryan
,
R. N.
Coffee
,
O.
Takahashi
,
S.
Wada
,
M. N.
Piancastelli
,
R.
Richter
,
K. C.
Prince
, and
R.
Feifel
, “
Using covariance mapping to investigate the dynamics of multi-photon ionization processes of ne atoms exposed to X-FEL pulses
,”
J. Phys. B: At., Mol. Opt. Phys.
46
,
164034
(
2013
).
5.
L. J.
Frasinski
,
V.
Zhaunerchyk
,
M.
Mucke
,
R. J.
Squibb
,
M.
Siano
,
J. H. D.
Eland
,
P.
Linusson
,
P.
van der Meulen
,
P.
Salén
,
R. D.
Thomas
,
M.
Larsson
,
L.
Foucar
,
J.
Ullrich
,
K.
Motomura
,
S.
Mondal
,
K.
Ueda
,
T.
Osipov
,
L.
Fang
,
B. F.
Murphy
,
N.
Berrah
,
C.
Bostedt
,
J. D.
Bozek
,
S.
Schorb
,
M.
Messerschmidt
,
J. M.
Glownia
,
J. P.
Cryan
,
R. N.
Coffee
,
O.
Takahashi
,
S.
Wada
,
M. N.
Piancastelli
,
R.
Richter
,
K. C.
Prince
, and
R.
Feifel
, “
Dynamics of hollow atom formation in intense X-ray pulses probed by partial covariance mapping
,”
Phys. Rev. Lett.
111
,
073002
(
2013
).
6.
D.
Koulentianos
,
A. E. A.
Fouda
,
S. H.
Southworth
,
J. D.
Bozek
,
J.
Küpper
,
R.
Santra
,
N. V.
Kryzhevoi
,
L. S.
Cederbaum
,
C.
Bostedt
,
M.
Messerschmidt
,
N.
Berrah
,
L.
Fang
,
B.
Murphy
,
T.
Osipov
,
J. P.
Cryan
,
J.
Glownia
,
S.
Ghimire
,
P. J.
Ho
,
B.
Krässig
,
D.
Ray
,
Y.
Li
,
E. P.
Kanter
,
L.
Young
, and
G.
Doumy
, “
High intensity x-ray interaction with a model bio-molecule system: Double-core-hole states and fragmentation of formamide
,”
J. Phys. B: At., Mol. Opt. Phys.
53
,
244005
(
2020
).
7.
D.
Koulentianos
,
S.
Carniato
,
R.
Püttner
,
G.
Goldsztejn
,
T.
Marchenko
,
O.
Travnikova
,
L.
Journel
,
R.
Guillemin
,
D.
Céolin
,
M. L. M.
Rocco
,
M. N.
Piancastelli
,
R.
Feifel
, and
M.
Simon
, “
Double-core-hole states in CH3CN: Pre-edge structures and chemical-shift contributions
,”
J. Chem. Phys.
149
,
134313
(
2018
).
8.
T.
Marchenko
,
S.
Carniato
,
G.
Goldsztejn
,
O.
Travnikova
,
L.
Journel
,
R.
Guillemin
,
I.
Ismail
,
D.
Koulentianos
,
J.
Martins
,
D.
Céolin
,
R.
Püttner
,
M. N.
Piancastelli
, and
M.
Simon
, “
Single and multiple excitations in double-core-hole states of free water molecules
,”
J. Phys. B: At., Mol. Opt. Phys.
53
,
224002
(
2020
).
9.
J. H. D.
Eland
,
M.
Tashiro
,
P.
Linusson
,
M.
Ehara
,
K.
Ueda
, and
R.
Feifel
, “
Double core hole creation and subsequent auger decay in NH3 and CH4 molecules
,”
Phys. Rev. Lett.
105
,
213005
(
2010
).
10.
P.
Lablanquie
,
F.
Penent
,
J.
Palaudoux
,
L.
Andric
,
P.
Selles
,
S.
Carniato
,
K.
Bučar
,
M.
Žitnik
,
M.
Huttula
,
J. H. D.
Eland
,
E.
Shigemasa
,
K.
Soejima
,
Y.
Hikosaka
,
I. H.
Suzuki
,
M.
Nakano
, and
K.
Ito
, “
Properties of hollow molecules probed by single-photon double ionization
,”
Phys. Rev. Lett.
106
,
063003
(
2011
).
11.
P.
Lablanquie
,
T. P.
Grozdanov
,
M.
Žitnik
,
S.
Carniato
,
P.
Selles
,
L.
Andric
,
J.
Palaudoux
,
F.
Penent
,
H.
Iwayama
,
E.
Shigemasa
,
Y.
Hikosaka
,
K.
Soejima
,
M.
Nakano
,
I. H.
Suzuki
, and
K.
Ito
, “
Evidence of single-photon two-site core double ionization of C2H2 molecules
,”
Phys. Rev. Lett.
107
,
193004
(
2011
).
12.
P.
Linusson
,
O.
Takahashi
,
K.
Ueda
,
J. H. D.
Eland
, and
R.
Feifel
, “
Structure sensitivity of double inner-shell holes in sulfur-containing molecules
,”
Phys. Rev. A
83
,
022506
(
2011
).
13.
M.
Mucke
,
J. H. D.
Eland
,
O.
Takahashi
,
P.
Linusson
,
D.
Lebrun
,
K.
Ueda
, and
R.
Feifel
, “
Formation and decay of core-orbital vacancies in the water molecule
,”
Chem. Phys. Lett.
558
,
82
87
(
2013
).
14.
M.
Nakano
,
P.
Selles
,
P.
Lablanquie
,
Y.
Hikosaka
,
F.
Penent
,
E.
Shigemasa
,
K.
Ito
, and
S.
Carniato
, “
Near-edge x-ray absorption fine structures revealed in core ionization photoelectron spectroscopy
,”
Phys. Rev. Lett.
111
,
123001
(
2013
).
15.
S.
Carniato
,
P.
Selles
,
L.
Andric
,
J.
Palaudoux
,
F.
Penent
,
M.
Žitnik
,
K.
Bučar
,
M.
Nakano
,
Y.
Hikosaka
,
K.
Ito
, and
P.
Lablanquie
, “
Single photon simultaneous K-shell ionization and K-shell excitation. I. Theoretical model applied to the interpretation of experimental results on H2O
,”
J. Chem. Phys.
142
,
014307
(
2015
).
16.
S.
Carniato
,
P.
Selles
,
L.
Andric
,
J.
Palaudoux
,
F.
Penent
,
M.
Žitnik
,
K.
Bučar
,
M.
Nakano
,
Y.
Hikosaka
,
K.
Ito
, and
P.
Lablanquie
, “
Single photon simultaneous K-shell ionization and K-shell excitation. II. Specificities of hollow nitrogen molecular ions
,”
J. Chem. Phys.
142
,
014308
(
2015
).
17.
M.
Nakano
,
F.
Penent
,
M.
Tashiro
,
T. P.
Grozdanov
,
M.
Žitnik
,
S.
Carniato
,
P.
Selles
,
L.
Andric
,
P.
Lablanquie
,
J.
Palaudoux
,
E.
Shigemasa
,
H.
Iwayama
,
Y.
Hikosaka
,
K.
Soejima
,
I. H.
Suzuki
,
N.
Kouchi
, and
K.
Ito
, “
Single photon K−2 and K−1K−1 double core ionization in C2H2n (n = 1–3), CO, and N2 as a potential new tool for chemical analysis
,”
Phys. Rev. Lett.
110
,
163001
(
2013
).
18.
A. P.
Hitchcock
and
C. E.
Brion
, “
Carbon K-shell excitation of C2H2, C2H4, C2H6 and C6H6 by 2.5 keV electron impact
,”
J. Electron Spectrosc. Relat. Phenom.
10
,
317
330
(
1977
).
19.
X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications
, edited by
J.
van Bokhoven
and
C.
Lamberti
(
Wiley & Sons
,
2016
).
20.
Synchrotron Radiation: Basics, Methods and Applications
, edited by
S.
Mobilio
,
F.
Boscherini
, and
C.
Meneghini
(
Springer
,
2014
).
21.
C. J.
Milne
,
T. J.
Penfold
, and
M.
Chergui
, “
Recent experimental and theoretical developments in time-resolved X-ray spectroscopies
,”
Coord. Chem. Rev.
277-278
,
44
68
(
2014
).
22.
X-Ray Free Electron Lasers: Applications in Materials, Chemistry and Biology
, Energy and Environment Series Vol. 18, edited by
U.
Bergmann
,
V.
Yachandra
, and
J.
Yano
(
Royal Society of Chemistry
,
2017
).
23.
A.
Ferté
,
J.
Palaudoux
,
F.
Penent
,
H.
Iwayama
,
E.
Shigemasa
,
Y.
Hikosaka
,
K.
Soejima
,
K.
Ito
,
P.
Lablanquie
,
R.
Taïeb
, and
S.
Carniato
, “
Advanced computation method for double core hole spectra: Insight into the nature of intense shake-up satellites
,”
J. Phys. Chem. Lett.
11
,
4359
4366
(
2020
).
24.
A.
Ponzi
,
C.
Angeli
,
R.
Cimiraglia
,
S.
Coriani
, and
P.
Decleva
, “
Dynamical photoionization observables of the CS molecule: The role of electron correlation
,”
J. Chem. Phys.
140
,
204304
(
2014
).
25.
A.
Ponzi
,
N.
Quadri
,
C.
Angeli
, and
P.
Decleva
, “
Electron correlation effects in the photoionization of CO and isoelectronic diatomic molecules
,”
Phys. Chem. Chem. Phys.
21
,
1937
1951
(
2019
).
26.
H.
Ågren
and
H. J. A.
Jensen
, “
An efficient method for the calculation of generalized overlap amplitudes for core photoelectron shake-up spectra
,”
Chem. Phys. Lett.
137
,
431
436
(
1987
).
27.
J.
Wenzel
,
A.
Holzer
,
M.
Wormit
, and
A.
Dreuw
, “
Analysis and comparison of CVS-ADC approaches up to third order for the calculation of core-excited states
,”
J. Chem. Phys.
142
,
214104
(
2015
).
28.
M.
Wormit
,
D. R.
Rehn
,
P. H. P.
Harbach
,
J.
Wenzel
,
C. M.
Krauter
,
E.
Epifanovsky
, and
A.
Dreuw
, “
Investigating excited electronic states using the algebraic diagrammatic construction (ADC) approach of the polarisation propagator
,”
Mol. Phys.
112
,
774
784
(
2014
).
29.
A.
Dreuw
and
M.
Wormit
, “
The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
5
,
82
95
(
2015
).
30.
J. F.
Stanton
and
R. J.
Bartlett
, “
The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties
,”
J. Chem. Phys.
98
,
7029
7039
(
1993
).
31.
M. L.
Vidal
,
X.
Feng
,
E.
Epifanovsky
,
A. I.
Krylov
, and
S.
Coriani
, “
A new and efficient equation-of-motion coupled-cluster framework for core-excited and core-ionized states
,”
J. Chem. Theory Comput.
15
,
3117
3133
(
2019
).
32.
B. N. C.
Tenorio
,
T.
Moitra
,
M. A. C.
Nascimento
,
A. B.
Rocha
, and
S.
Coriani
, “
Molecular inner-shell photoabsorption/photoionization cross sections at core-valence-separated coupled cluster level: Theory and examples
,”
J. Chem. Phys.
150
,
224104
(
2019
).
33.
L. S.
Cederbaum
, “
Many-body theory of multiple core holes
,”
Phys. Rev. A
35
,
622
631
(
1987
).
34.
L. S.
Cederbaum
,
F.
Tarantelli
,
A.
Sgamellotti
, and
J.
Schirmer
, “
Double vacancies in the core of benzene
,”
J. Chem. Phys.
86
,
2168
2175
(
1987
).
35.
L. S.
Cederbaum
,
F.
Tarantelli
,
A.
Sgamellotti
, and
J.
Schirmer
, “
On double vacancies in the core
,”
J. Chem. Phys.
85
,
6513
6523
(
1986
).
36.
H.
Ågren
and
H. J. A.
Jensen
, “
Relaxation and correlation contributions to molecular double core ionization energies
,”
Chem. Phys.
172
,
45
57
(
1993
).
37.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Sigbahn
, “
A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach
,”
Chem. Phys.
48
,
157
173
(
1980
).
38.
J.
Olsen
,
B. O.
Roos
,
P.
Jørgensen
, and
H. J. A.
Jensen
, “
Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces
,”
J. Chem. Phys.
89
,
2185
2192
(
1988
).
39.
P. A.
Malmqvist
,
A.
Rendell
, and
B. O.
Roos
, “
The restricted active space self-consistent-field method, implemented with a split graph unitary group approach
,”
J. Phys. Chem.
94
,
5477
5482
(
1990
).
40.
Y.
Zhang
,
U.
Bergmann
,
R.
Schoenlein
,
M.
Khalil
, and
N.
Govind
, “
Double core hole valence-to-core x-ray emission spectroscopy: A theoretical exploration using time-dependent density functional theory
,”
J. Chem. Phys.
151
,
144114
(
2019
).
41.
Y.
Zhang
,
D.
Healion
,
J. D.
Biggs
, and
S.
Mukamel
, “
Double-core excitations in formamide can be probed by X-ray double-quantum-coherence spectroscopy
,”
J. Chem. Phys.
138
,
144301
(
2013
).
42.
O.
Takahashi
,
M.
Tashiro
,
M.
Ehara
,
K.
Yamasaki
, and
K.
Ueda
, “
Theoretical spectroscopy on K−2, K−1L−1, and L−2 double core hole states of SiX4 (X = H, F, Cl, and CH3) molecules
,”
Chem. Phys.
384
,
28
35
(
2011
).
43.
O.
Takahashi
,
N. V.
Kryzhevoi
, and
K.
Ueda
, “
Probing chemical environment with molecular double core-hole electron spectroscopy
,”
J. Electron Spectrosc. Relat. Phenom.
204
,
290
302
(
2015
), part of Special Issue: Gas phase spectroscopic and dynamical studies at Free-Electron Lasers and other short wavelength sources.
44.
O.
Takahashi
,
M.
Tashiro
,
M.
Ehara
,
K.
Yamasaki
, and
K.
Ueda
, “
Theoretical molecular double-core-hole spectroscopy of nucleobases
,”
J. Phys. Chem. A
115
,
12070
12082
(
2011
).
45.
N. V.
Kryzhevoi
,
R.
Santra
, and
L. S.
Cederbaum
, “
Inner-shell single and double ionization potentials of aminophenol isomers
,”
J. Chem. Phys.
135
,
084302
(
2011
).
46.
W.
Hua
,
K.
Bennett
,
Y.
Zhang
,
Y.
Luo
, and
S.
Mukamel
, “
Study of double core hole excitations in molecules by X-ray double-quantum-coherence signals: A multi-configuration simulation
,”
Chem. Sci.
7
,
5922
5933
(
2016
).
47.
M. G.
Delcey
,
L. K.
Sørensen
,
M.
Vacher
,
R. C.
Couto
, and
M.
Lundberg
, “
Efficient calculations of a large number of highly excited states for multiconfigurational wavefunctions
,”
J. Comput. Chem.
40
,
1789
1799
(
2019
).
48.
X.
Zheng
,
J.
Liu
,
G.
Doumy
,
L.
Young
, and
L.
Cheng
, “
Hetero-site double core ionization energies with sub-electronvolt accuracy from delta-coupled-cluster calculations
,”
J. Phys. Chem. A
124
,
4413
4426
(
2020
).
49.
J.
Lee
,
D. W.
Small
, and
M.
Head-Gordon
, “
Excited states via coupled cluster theory without equation-of-motion methods: Seeking higher roots with application to doubly excited states and double core hole states
,”
J. Chem. Phys.
151
,
214103
(
2019
).
50.
R.
Santra
,
N. V.
Kryzhevoi
, and
L. S.
Cederbaum
, “
X-ray two-photon photoelectron spectroscopy: A theoretical study of inner-shell spectra of the organic para-aminophenol molecule
,”
Phys. Rev. Lett.
103
,
013002
(
2009
).
51.
E. M.-L.
Ohrendorf
,
L. S.
Cederbaum
, and
F.
Tarantelli
, “
Double vacancies in the cores of silane and tetrafluorosilane
,”
Phys. Rev. A
44
,
205
217
(
1991
).
52.
M.
Tashiro
,
K.
Ueda
, and
M.
Ehara
, “
Double core–hole correlation satellite spectra of N2 and CO molecules
,”
Chem. Phys. Lett.
521
,
45
51
(
2012
).
53.
S.
Evangelisti
,
J.-P.
Daudey
, and
J.-P.
Malrieu
, “
Convergence of an improved CIPSI algorithm
,”
Chem. Phys.
75
,
91
102
(
1983
).
54.
R. J.
Harrison
, “
Approximating full configuration interaction with selected configuration interaction and perturbation theory
,”
J. Chem. Phys.
94
,
5021
5031
(
1991
).
55.
K.
Andersson
,
P.-Å.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
, “
Second-order perturbation theory with a CASSCF reference function
,”
J. Phys. Chem.
94
,
5483
5488
(
1990
).
56.
K.
Andersson
,
P. Å.
Malmqvist
, and
B. O.
Roos
, “
Second-order perturbation theory with a complete active space self-consistent field reference function
,”
J. Chem. Phys.
96
,
1218
1226
(
1992
).
57.
P.-Å.
Malmqvist
,
K.
Pierloot
,
A. R. M.
Shahi
,
C. J.
Cramer
, and
L.
Gagliardi
, “
The restricted active space followed by second-order perturbation theory method: Theory and application to the study of CuO2 and Cu2O2 systems
,”
J. Chem. Phys.
128
,
204109
(
2008
).
58.
V.
Sauri
,
L.
Serrano-Andrés
,
A. R. M.
Shahi
,
L.
Gagliardi
,
S.
Vancoillie
, and
K.
Pierloot
, “
Multiconfigurational second-order perturbation theory restricted active space (RASPT2) method for electronic excited states: A benchmark study
,”
J. Chem. Theory Comput.
7
,
153
168
(
2011
).
59.
P.-Å.
Malmqvist
and
B. O.
Roos
, “
The CASSCF state interaction method
,”
Chem. Phys. Lett.
155
,
189
194
(
1989
).
60.
S. F.
Boys
, “
Construction of some molecular orbitals to be approximately invariant for changes from one molecule to another
,”
Rev. Mod. Phys.
32
,
296
299
(
1960
).
61.
J.
Pipek
and
P. G.
Mezey
, “
A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions
,”
J. Chem. Phys.
90
,
4916
4926
(
1989
).
62.
F.
Aquilante
,
T. B.
Pedersen
,
A.
Sánchez de Merás
, and
H.
Koch
, “
Fast noniterative orbital localization for large molecules
,”
J. Chem. Phys.
125
,
174101
(
2006
).
63.
T.
Moitra
,
A.
Ponzi
,
H.
Koch
,
S.
Coriani
, and
P.
Decleva
, “
Accurate description of photoionization dynamical parameters
,”
J. Phys. Chem. Lett.
11
,
5330
5337
(
2020
).
64.
T.
Moitra
,
S.
Coriani
, and
P.
Decleva
, “
Capturing correlation effects on photoionization dynamics
,”
J. Chem. Theory Comput.
17
,
5064
5079
(
2021
).
65.
P. Å.
Malmqvist
, “
Calculation of transition density matrices by nonunitary orbital transformations
,”
Int. J. Quantum Chem.
30
,
479
494
(
1986
).
66.
G.
Grell
,
S. I.
Bokarev
,
B.
Winter
,
R.
Seidel
,
E. F.
Aziz
,
S. G.
Aziz
, and
O.
Kühn
, “
Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling
,”
J. Chem. Phys.
143
,
074104
(
2015
).
67.
G.
Grell
,
O.
Kühn
, and
S. I.
Bokarev
, “
Multireference quantum chemistry protocol for simulating autoionization spectra: Test of ionization continuum models for the neon atom
,”
Phys. Rev. A
100
,
042512
(
2019
).
68.
G.
Grell
and
S. I.
Bokarev
, “
Multi-reference protocol for (auto)ionization spectra: Application to molecules
,”
J. Chem. Phys.
152
,
074108
(
2020
).
69.
C. D.
Sherrill
and
H. F.
Schaefer
,
The Configuration Interaction Method: Advances in Highly Correlated Approaches
(
Academic Press
,
1999
), pp.
143
269
.
70.
I. F.
Galván
,
M.
Vacher
,
A.
Alavi
,
C.
Angeli
,
F.
Aquilante
,
J.
Autschbach
,
J. J.
Bao
,
S. I.
Bokarev
,
N. A.
Bogdanov
,
R. K.
Carlson
,
L. F.
Chibotaru
,
J.
Creutzberg
,
N.
Dattani
,
M. G.
Delcey
,
S. S.
Dong
,
A.
Dreuw
,
L.
Freitag
,
L. M.
Frutos
,
L.
Gagliardi
,
F.
Gendron
,
A.
Giussani
,
L.
González
,
G.
Grell
,
M.
Guo
,
C. E.
Hoyer
,
M.
Johansson
,
S.
Keller
,
S.
Knecht
,
G.
Kovačević
,
E.
Källman
,
G.
Li Manni
,
M.
Lundberg
,
Y.
Ma
,
S.
Mai
,
J. P.
Malhado
,
P.-Å.
Malmqvist
,
P.
Marquetand
,
S. A.
Mewes
,
J.
Norell
,
M.
Olivucci
,
M.
Oppel
,
Q. M.
Phung
,
K.
Pierloot
,
F.
Plasser
,
M.
Reiher
,
A. M.
Sand
,
I.
Schapiro
,
P.
Sharma
,
C. J.
Stein
,
L. K.
Sørensen
,
D. G.
Truhlar
,
M.
Ugandi
,
L.
Ungur
,
A.
Valentini
,
S.
Vancoillie
,
V.
Veryazov
,
O.
Weser
,
T. A.
Wesołowski
,
P.-O.
Widmark
,
S.
Wouters
,
A.
Zech
,
J. P.
Zobel
, and
R.
Lindh
, “
OpenMolcas: From source code to insight
,”
J. Chem. Theory Comput.
15
,
5925
5964
(
2019
).
71.
D. E.
Woon
and
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties
,”
J. Chem. Phys.
100
,
2975
2988
(
1994
).
72.
N. B.
Balabanov
and
K. A.
Peterson
, “
Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc–Zn
,”
J. Chem. Phys.
123
,
064107
(
2005
).
73.
T.
Nakajima
and
K.
Hirao
, “
The Douglas–Kroll–Hess approach
,”
Chem. Rev.
112
,
385
402
(
2012
).
74.
NIST Chemistry WebBook—Standard Reference Database Number 69,
2021
.
75.
A.
Rohatgi
, Webplotdigitizer,
2020
.
76.
T.
Åberg
, “
Theory of X-ray satellites
,”
Phys. Rev.
156
,
35
41
(
1967
).

Supplementary Material

You do not currently have access to this content.