The production of reactive oxygen species (ROS), such as hydroxyl radicals, by ultrasonic activation of semiconductor nanoparticles (NPs), including TiO2, has excellent potential for use in sonodynamic therapy and for the sonocatalytic degradation of pollutants. However, TiO2 NPs have limitations including low yields of generated ROS that result from fast electron–hole recombination. In this study, we first investigated the sonocatalytic activity of TiO2-supported Au nanoclusters (NCs) (Au NCs/TiO2) by monitoring the production of hydroxyl radicals (•OH) under ultrasonication conditions. The deposition of Au144 NCs on TiO2 NPs was found to enhance sonocatalytic activity for •OH production by approximately a factor of 2. Electron–hole recombination in ultrasonically excited TiO2 NPs is suppressed by Au144 NCs acting as an electron trap; this charge separation resulted in enhanced •OH production. In contrast, the deposition of Au25 NCs on TiO2 NPs resulted in lower sonocatalytic activity due to less charge separation, which highlights the effectiveness of combining Au144 NCs with TiO2 NPs for enhancing sonocatalytic activity. The sonocatalytic action that forms electron–hole pairs on the Au144/TiO2 catalyst is due to both heat and sonoluminescence from the implosive collapse of cavitation bubbles. Consequently, the ultrasonically excited Au144 (3 wt. %)/TiO2 catalyst exhibited higher catalytic activity for the production of •OH because of less light shadowing effect, in contrast to the lower catalytic activity when irradiated with only external light.

1.
M.
Ashokkumar
,
Handbook of Ultrasonics and Sonochemistry
(
Springer
,
Singapore
, 2016); available at https://link.springer.com/referencework/10.1007%2F978-981-287-278-4
2.
L. H.
Thompson
 et al,
Ind. Eng. Chem. Res.
38
,
1215
(
1999
).
3.
N.
Yumita
 et al,
Jpn. J. Cancer Res.
80
,
219
(
1989
).
4.
X.
Lin
 et al,
Angew. Chem., Int. Ed.
59
,
14212
(
2020
).
5.
T.
Xu
 et al,
Nano Res.
13
,
2898
(
2020
).
6.
K. S.
Suslick
,
Sci. Am.
260
,
80
(
1989
).
7.
K. S.
Suslick
,
Science
247
(
4949
),
1439
(
1990
).
8.
Y. T.
Didenko
 et al,
J. Am. Chem. Soc.
121
,
5817
(
1999
).
9.
Y. T.
Didenko
and
K. S.
Suslick
,
Nature
418
,
394
(
2002
).
10.
J. R.
Wu
and
W. L.
Nyborg
,
Adv. Drug Delivery Rev.
60
,
1103
(
2008
).
11.
A. J.
Walton
and
G. T.
Reynolds
,
Adv. Phys.
33
(
6
),
595
(
1984
).
12.
P.-K.
Choi
,
Jpn. J. Appl. Phys., Part 1
56
,
07JA01
(
2017
).
13.
J.
Wang
 et al,
Ultrason. Sonochem.
12
,
331
(
2004
).
14.
J.
Wang
 et al,
J. Hazard. Mater.
137
,
972
(
2006
).
15.
N.
Shimizu
 et al,
Ultrason. Sonochem.
14
,
184
(
2007
).
16.
T.
Sadeghi Rad
 et al,
J. Cleaner Prod.
202
,
53
(
2018
).
17.
M. C.
Kung
 et al,
Ind. Eng. Chem. Res.
58
,
17325
(
2019
).
18.
Y.
Wang
 et al,
Environ. Sci. Technol.
42
,
6173
(
2008
).
19.
W.
Bo
 et al,
Sci. China: Chem.
54
,
887
(
2011
).
20.
L.
Zhu
 et al,
Ultrason. Sonochem.
20
,
478
(
2013
).
21.
A.
Ziylan-Yavas
 et al,
Appl. Catal., B
172-173
,
7
(
2015
).
22.
V. G.
Deepagan
 et al,
Nano Lett.
16
,
6257
(
2016
).
23.
T.
Chavea
 et al,
Catal. Today
241
,
55
(
2015
).
24.
P.
Qiu
 et al,
Ultrason. Sonochem.
45
,
29
(
2018
).
25.
B.
Kakavandia
 et al,
Ultrason. Sonochem.
55
,
75
(
2019
).
26.
Y.
Cao
 et al,
Chem. Mater.
31
,
9105
(
2019
).
27.
I.
Chakraborty
,
T.
Pradeep
 et al,
Chem. Rev.
117
,
8208
(
2017
).
28.
T.
Higaki
 et al,
Acc. Chem. Res.
51
,
2764
(
2018
).
29.
Y.
Du
 et al,
Chem. Rev.
120
,
526
(
2019
).
30.
T.
Kawawaki
 et al,
Nanoscale Adv.
2
,
17
(
2020
).
31.
Y.
Li
 et al,
Adv. Mater.
32
,
1905488
(
2020
).
32.
R.
Jin
 et al,
Chem. Rev.
121
,
567
(
2021
).
33.
Q.
Shi
 et al,
Chem. Rec.
21
,
879
(
2021
).
34.
A. A.
Sousa
 et al,
Small
8
,
2277
(
2012
).
35.
F.
Bertorelle
 et al,
ACS Omega
3
,
15635
(
2018
).
36.
M.
Sahni
 et al,
Ind. Eng. Chem. Res.
45
,
5819
(
2006
).
37.
K.
Kawamura
 et al,
J. Phys. Chem. C
123
,
26644
(
2019
).
38.
D. G.
Shchukin
 et al,
Adv. Mater.
23
,
1922
(
2011
).
39.
P. A.
Osorio-Vargas
 et al,
Ultrason. Sonochem.
19
,
383
(
2012
).
40.
S.
Hilgenfeldt
 et al,
Nature
398
,
402
(
1999
).
41.
T. J.
Matula
 et al,
Phys. Rev. Lett.
75
,
2602
(
1995
).
42.
R. A.
Hiller
 et al,
Phys. Rev. Lett.
80
,
1090
(
1998
).
43.
J.
Kim
and
D.
Lee
,
J. Am. Chem. Soc.
129
,
7706
(
2007
).
44.
N. S.
Han
 et al,
ACS Appl. Mater. Interfaces
8
,
1067
(
2016
).
45.
J.
Mizuguchi
 et al,
J. Appl. Phys.
96
,
3514
(
2004
).
46.
K.
Matsumoto
 et al,
J. Chem. Eng. Jpn.
41
,
57
(
2008
).
47.
E. V.
Skorb
 et al,
Langmuir
32
,
11072
(
2016
).
48.
J.
Lee
 et al,
J. Phys. Chem. Lett.
2
,
2840
(
2011
).
49.
C.
Yu
 et al,
J. Phys. Chem. Lett.
4
,
2847
(
2013
).
50.
M. A.
Abbas
 et al,
J. Am. Chem. Soc.
138
(
1
),
390
(
2016
).
51.
K.
Kwak
 et al,
J. Phys. Chem. Lett.
8
,
4898
(
2017
).
52.
Y. N.
Tan
 et al,
ISRN Mater. Sci.
2011
,
261219
.

Supplementary Material

You do not currently have access to this content.