The reaction processes of ligand-protected metal clusters induced by irradiating atmospheric pressure plasma (APP) were investigated using optical spectroscopy, mass spectrometry, and density functional theory (DFT) calculations. The target clusters were phosphine-protected gold-based clusters [MAu8(PPh3)8]2+ (M = Pt, Pd) and [Au9(PPh3)8]3+, which have a crown-shaped M@Au8 (M = Pt, Pd, Au) core with an unligated M site at the central position. The APP irradiation of [MAu8(PPh3)8]2+ (M = Pt, Pd) in methanol resulted in the selective formation of [PtAu8(PPh3)8CO]2+ and [PdAu9(PPh3)8CN]2+ via the addition of a CO molecule and AuCN unit, respectively, generated in situ by the APP irradiation. In contrast, the APP irradiation of [Au9(PPh3)8]3+ in methanol yielded [Au9(PPh3)7(CN)1]2+ and [Au10(PPh3)7(CN)2]2+ as the main products, which were produced by sequential addition of AuCN to reactive [Au8(PPh3)7]2+ formed by dissociation equilibrium of [Au9(PPh3)8]3+. DFT calculations predicted that a unique chain-like {–(CNAu)n–PPh3} (n = 1, 2) ligand was formed via the sequential insertion of –CNAu– units into the Au–PPh3 bond of [PdAu8(PPh3)8]2+ and [Au8(PPh3)7]2+. These findings open up a new avenue for developing novel metal clusters via the chemical transformation of atomically defined metal clusters by APP irradiation.

1.
H.
Häkkinen
,
Chem. Soc. Rev.
37
,
1847
(
2008
).
2.
T.
Tsukuda
and
H.
Häkkinen
,
Protected Metal Clusters: From Fundamentals to Applications
(
Elsevier
,
Amsterdam
,
2015
).
3.
R.
Jin
,
C.
Zeng
,
M.
Zhou
, and
Y.
Chen
,
Chem. Rev.
116
,
10346
(
2016
).
4.
Y.
Niihori
,
K.
Yoshida
,
S.
Hossain
,
W.
Kurashige
, and
Y.
Negishi
,
Bull. Chem. Soc. Jpn.
92
,
664
(
2019
).
5.
Y.
Shichibu
,
Y.
Negishi
,
T.
Tsukuda
, and
T.
Teranishi
,
J. Am. Chem. Soc.
127
,
13464
(
2005
).
6.
S.
Wang
,
Q.
Li
,
X.
Kang
, and
M.
Zhu
,
Acc. Chem. Res.
51
,
2784
(
2018
).
7.
K. R.
Krishnadas
,
A.
Ghosh
,
A.
Baksi
,
I.
Chakraborty
,
G.
Natarajan
, and
T.
Pradeep
,
J. Am. Chem. Soc.
138
,
140
(
2016
).
8.
M.
Suyama
,
S.
Takano
,
T.
Nakamura
, and
T.
Tsukuda
,
J. Am. Chem. Soc.
141
,
14048
(
2019
).
9.
S.
Takano
,
S.
Hasegawa
,
M.
Suyama
, and
T.
Tsukuda
,
Acc. Chem. Res.
51
,
3074
(
2018
).
10.
E.
Ito
,
S.
Takano
,
T.
Nakamura
, and
T.
Tsukuda
,
Angew. Chem., Int. Ed.
60
,
645
(
2021
).
11.
A.
Schütze
,
J. Y.
Jeong
,
S. E.
Babayan
,
J.
Park
,
G. S.
Selwyn
, and
R. F.
Hicks
,
IEEE Trans. Plasma Sci.
26
,
1685
(
1998
).
12.
H.-H.
Kim
,
Y.
Teramoto
,
A.
Ogata
,
H.
Takagi
, and
T.
Nanba
,
Plasma Chem. Plasma Process.
36
,
45
(
2016
).
13.
Z.
Wang
,
Y.
Zhang
,
E. C.
Neyts
,
X.
Cao
,
X.
Zhang
,
B. W.-L.
Jang
, and
C.-j.
Liu
,
ACS Catal.
8
,
2093
(
2018
).
14.
Y.
Tan
,
H.
Liu
,
X. Y.
Liu
,
A.
Wang
,
C.
Liu
, and
T.
Zhang
,
Chin. J. Catal.
39
,
929
(
2018
).
15.
D.
Mariotti
,
J.
Patel
,
V.
Švrček
, and
P.
Maguire
,
Plasma Process. Polym.
9
,
1074
(
2012
).
16.
J. H. M.
Maurer
,
L.
González-García
,
B.
Reiser
,
I.
Kanelidis
, and
T.
Kraus
,
ACS Appl. Mater. Interfaces
7
,
7838
(
2015
).
17.
S.
Gong
,
Y.
Zhao
,
Q.
Shi
,
Y.
Wang
,
L. W.
Yap
, and
W.
Cheng
,
Electroanalysis
28
,
1298
(
2016
).
18.
J. H. M.
Maurer
,
L.
González-García
,
B.
Reiser
,
I.
Kanelidis
, and
T.
Kraus
,
Nano Lett.
16
,
2921
(
2016
).
19.
S.
Takano
,
H.
Hirai
,
S.
Muramatsu
, and
T.
Tsukuda
,
J. Am. Chem. Soc.
140
,
8380
(
2018
).
20.
R. P. F.
Kanters
,
P. P. J.
Schlebos
,
J. J.
Bour
,
W. P.
Bosman
,
H. J.
Behm
, and
J. J.
Steggerda
,
Inorg. Chem.
27
,
4034
(
1988
).
21.
S.
Yamazoe
,
S.
Matsuo
,
S.
Muramatsu
,
S.
Takano
,
K.
Nitta
, and
T.
Tsukuda
,
Inorg. Chem.
56
,
8319
(
2017
).
22.
S.
Takano
,
H.
Hirai
,
S.
Muramatsu
, and
T.
Tsukuda
,
J. Am. Chem. Soc.
140
,
12314
(
2018
).
23.
S.
Takano
,
S.
Ito
, and
T.
Tsukuda
,
J. Am. Chem. Soc.
141
,
15994
(
2019
).
24.
H.
Furusho
,
K.
Kitano
,
S.
Hamaguchi
, and
Y.
Nagasaki
,
Chem. Mater.
21
,
3526
(
2009
).
25.
G. C.-Y.
Chan
,
J. T.
Shelley
,
J. S.
Wiley
,
C.
Engelhard
,
A. U.
Jackson
,
R. G.
Cooks
, and
G. M.
Hieftje
,
Anal. Chem.
83
,
3675
(
2011
).
26.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16, Revision B.01,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
27.
M. J.
Adrowski
and
W. R.
Mason
,
Inorg. Chem.
36
,
1443
(
1997
).
28.
M. V.
Erofeev
,
M. I.
Lomaev
,
D. A.
Sorokin
, and
V. F.
Tarasenko
,
Opt. Spectrosc.
112
,
36
(
2012
).
29.
L. N.
Ito
,
A. M. P.
Felicissimo
, and
L. H.
Pignolet
,
Inorg. Chem.
30
,
988
(
1991
).
30.
L. N.
Ito
,
B. J.
Johnson
,
A. M.
Mueting
, and
L. H.
Pignolet
,
Inorg. Chem.
28
,
2026
(
1989
).
31.
G. A.
Bowmaker
,
B. J.
Kennedy
, and
J. C.
Reid
,
Inorg. Chem.
37
,
3968
(
1998
).
32.
J. W. A.
van der Velden
,
J. J.
Bour
,
W. P.
Bosman
, and
J. H.
Noordik
,
Inorg. Chem.
22
,
1913
(
1983
).
33.
M.
Walter
,
J.
Akola
,
O.
Lopez-Acevedo
,
P. D.
Jadzinsky
,
G.
Calero
,
C. J.
Ackerson
,
R. L.
Whetten
,
H.
Grönbeck
, and
H.
Häkkinen
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
9157
(
2008
).
34.
S.
Takano
and
T.
Tsukuda
,
J. Am. Chem. Soc.
143
,
1683
(
2021
).
35.
L. C.
McKenzie
,
T. O.
Zaikova
, and
J. E.
Hutchison
,
J. Am. Chem. Soc.
136
,
13426
(
2014
).

Supplementary Material

You do not currently have access to this content.