Electronic relaxation dynamics of neutral Au38(SC6H13)24 monolayer-protected clusters (MPCs), following excitation of the mixed 15 875 cm−1 charge transfer resonance, were studied using femtosecond transient absorption (fsTA) and two-dimensional electronic spectroscopy (2DES). The excited carriers relax by three different mechanisms, including an ∼100 fs HOMO−12/−13 to HOMO−4/−6 hole transfer, picosecond HOMO−4/−6 to HOMO hole transfer, and subsequent electron–hole recombination that persisted beyond the hundreds of picoseconds measurement range. The fsTA data revealed two transient bleach components at 15 820 and 15 625 cm−1, where the lower frequency component exhibited a delayed first-order buildup of 80 ± 25 fs that matched the decay of the high-energy bleach component (110 ± 45 fs). These results suggested that the excited charge carriers internally relax within the exited-state manifold in ≈100 fs. 2DES resolved multiple electronic fine-structure transient peaks that spanned excitation frequencies ranging from 15 500 to 16 100 cm−1. State-to-state dynamics were understood by the analysis of time-dependent 2DES transient signal amplitudes at numerous excitation-detection frequency combinations. An off-diagonal cross peak at 15 825–15 620 cm−1 excitation-detection signified the HOMO−12/−13 to HOMO−4/−6 hole transfer process. The lowest-frequency (15 620 cm−1) 2DES diagonal fine-structure peak exhibited instantaneous amplitude but intensified following a 75 ± 10 fs buildup when compared to diagonal peaks at higher frequencies. This observation indicated that the charge transfer resonance in Au38(SC6H13)24 MPCs is comprised of several electronic transitions of unique spectral weights, which may result from different orbital contributions associated with specific cluster domains. The use of 2DES in combination with structurally precise MPCs can provide a platform for understanding structure-dependent electronic dynamics in metal nanoclusters and technologically important metal–chalcogenide interfaces.

1.
T. D.
Green
,
P. J.
Herbert
,
C.
Yi
,
C.
Zeng
,
S.
McGill
,
R.
Jin
, and
K. L.
Knappenberger
, Jr.
,
J. Phys. Chem. C
120
,
17784
17790
(
2016
).
2.
L. J.
Williams
,
P. J.
Herbert
,
M. A.
Tofanelli
,
C. J.
Ackerson
, and
K. L.
Knappenberger
, Jr.
,
J. Chem. Phys.
150
,
101102
(
2019
).
3.
P. J.
Herbert
and
K. L.
Knappenberger
, Jr.
,
Small
17
,
2004431
(
2021
).
4.
P. J.
Herbert
,
M. A.
Tofanelli
,
C. J.
Ackerson
, and
K. L.
Knappenberger
, Jr.
,
J. Phys. Chem. C
125
,
7267
7275
(
2021
).
5.
M.
Valden
,
X.
Lai
, and
D. W.
Goodman
,
Science
281
,
1647
1650
(
1998
).
6.
G.
Li
and
R.
Jin
,
Acc. Chem. Res.
46
,
1749
1758
(
2013
).
7.
O.
Lopez-Acevedo
,
K. A.
Kacprzak
,
J.
Akola
, and
H.
Häkkinen
,
Nat. Chem.
2
,
329
334
(
2010
).
8.
J. F.
Hainfeld
,
Science
236
,
450
453
(
1987
).
9.
S.
Knoppe
,
M.
Vanbel
,
S.
van Cleuvenbergen
,
L.
Vanpraet
,
T.
Bürgi
, and
T.
Verbiest
,
J. Phys. Chem. C
119
,
6221
6226
(
2015
).
10.
N.
Van Steerteghem
,
S.
Van Cleuvenbergen
,
S.
Deckers
,
C.
Kumara
,
A.
Dass
,
H.
Häkkinen
,
K.
Clays
,
T.
Verbiest
, and
S.
Knoppe
,
Nanoscale
8
,
12123
12127
(
2016
).
11.
Y.
Liu
,
H.
Tsunoyama
,
T.
Akita
, and
T.
Tsukuda
,
Chem. Commun.
46
,
550
552
(
2010
).
12.
Y.
Liu
,
H.
Tsunoyama
,
T.
Akita
,
S.
Xie
, and
T.
Tsukuda
,
ACS Catal.
1
,
2
6
(
2011
).
13.
P. D.
Jadzinsky
,
G.
Calero
,
C. J.
Ackerson
,
D. A.
Bushnell
, and
R. D.
Kornberg
,
Science
318
,
430
433
(
2007
).
14.
M. W.
Heaven
,
A.
Dass
,
P. S.
White
,
K. M.
Holt
, and
R. W.
Murray
,
J. Am. Chem. Soc.
130
,
3754
3755
(
2008
).
15.
R.
Jin
,
Nanoscale
2
,
343
362
(
2010
).
16.
Y.
Niihori
,
S.
Hashimoto
,
Y.
Koyama
,
S.
Hossain
,
W.
Kurashige
, and
Y.
Negishi
,
J. Phys. Chem. C
123
,
13324
13329
(
2019
).
17.
C.
Liu
,
T.
Li
,
G.
Li
,
K.
Nobusada
,
C.
Zeng
,
G.
Pang
,
N. L.
Rosi
, and
R.
Jin
,
Angew. Chem., Int. Ed.
54
,
9826
9829
(
2015
).
18.
S.
Tian
,
Y.-Z.
Li
,
M.-B.
Li
,
J.
Yuan
,
J.
Yang
,
Z.
Wu
, and
R.
Jin
,
Nat. Commun.
6
,
8667
8672
(
2015
).
19.
H.
Qian
,
W. T.
Eckenhoff
,
Y.
Zhu
,
T.
Pintauer
, and
R.
Jin
,
J. Am. Chem. Soc.
132
(
24
),
8280
8281
(
2010
).
20.
M.
Zhou
,
S.
Tian
,
C.
Zeng
,
M. Y.
Sfeir
, and
R.
Jin
,
J. Phys. Chem. C
121
,
10686
10693
(
2017
).
21.
M.
Zhou
,
T.
Higaki
,
G.
Hu
,
M. Y.
Sfeir
,
Y.
Chen
,
D.
Jiang
, and
R.
Jin
,
Science
364
,
279
282
(
2019
).
22.
T. D.
Green
,
C.
Yi
,
C.
Zeng
,
R.
Jin
,
S.
McGill
, and
K. L.
Knappenberger
, Jr.
,
J. Phys. Chem.
118
,
10611
10621
(
2014
).
23.
S. A.
Miller
,
J. M.
Womick
,
J. F.
Parker
,
R. W.
Murray
, and
A. M.
Moran
,
J. Phys. Chem. C
113
,
9440
9444
(
2009
).
24.
H.
Qian
,
M. Y.
Sfeir
, and
R.
Jin
,
J. Phys. Chem. C
114
,
19935
19940
(
2010
).
25.
M. S.
Devadas
,
J.
Kim
,
E.
Sinn
,
D.
Lee
,
T.
Goodson
III
, and
G.
Ramakrishna
,
J. Phys. Chem. C
114
,
22417
22423
(
2010
).
26.
T. D.
Green
and
K. L.
Knappenberger
, Jr.
,
Nanoscale
4
,
4111
4118
(
2012
).
27.
C.
Yi
,
M. A.
Tofanelli
,
C. J.
Ackerson
, and
K. L.
Knappenberger
, Jr.
,
J. Am. Chem. Soc.
135
,
18222
18228
(
2013
).
28.
S.
Mustalahti
,
P.
Myllyperkiö
,
T.
Lahtinen
,
K.
Salorinne
,
S.
Malola
,
J.
Koivisto
,
H.
Häkkinen
, and
M.
Pettersson
,
J. Phys. Chem. C
118
,
18233
18239
(
2014
).
29.
S.
Mustalahti
,
P.
Myllyperkiö
,
S.
Malola
,
T.
Lahtinen
,
K.
Salorinne
,
J.
Koivisto
,
H.
Häkkinen
, and
M.
Pettersson
,
ACS Nano
9
,
2328
2335
(
2015
).
30.
B.
Varnholt
,
R.
Letrun
,
J. J.
Bergkamp
,
Y.
Fu
,
O.
Yushchenko
,
S.
Decurtins
,
E.
Vauthey
,
S.-X.
Liu
, and
T.
Bürgi
,
Phys. Chem. Chem. Phys.
17
,
14788
14795
(
2015
).
31.
C.
Yi
,
H.
Zheng
,
L. M.
Tvedte
,
C. J.
Ackerson
, and
K. L.
Knappenberger
, Jr.
,
J. Phys. Chem. C
119
,
6307
6313
(
2015
).
32.
C.
Yi
,
H.
Zheng
,
P. J.
Herbert
,
Y.
Chen
,
R.
Jin
, and
K. L.
Knappenberger
, Jr.
,
J. Phys. Chem. C
121
,
24894
24902
(
2017
).
33.
P. J.
Herbert
,
C.
Yi
,
W. S.
Compel
,
C. J.
Ackerson
, and
K. L.
Knappenberger
, Jr.
,
J. Phys. Chem. C
122
,
19251
19258
(
2018
).
34.
O.
Lopez-Acevedo
,
H.
Tsunoyama
,
T.
Tsukuda
,
H.
Häkkinen
, and
C. M.
Aikens
,
J. Am. Chem. Soc.
132
,
8210
8218
(
2010
).
35.
J. D.
Hybl
,
A. W.
Albrecht
,
S. M.
Gallagher Faeder
, and
D. M.
Jonas
,
Chem. Phys. Lett.
297
,
307
313
(
1998
).
36.
J. D.
Hybl
,
A.
Albrecht Ferro
, and
D. M.
Jonas
,
J. Chem. Phys.
115
,
6606
(
2001
).
37.
T.
Brixner
,
T.
Mančal
,
I. V.
Stiopkin
, and
G. R.
Fleming
,
J. Chem. Phys.
121
,
4221
(
2004
).
38.
T.
Brixner
,
J.
Stenger
,
H. M.
Vaswani
,
M.
Cho
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature
434
,
625
628
(
2005
).
39.
J. A.
Myers
,
K. L. M.
Lewis
,
F. D.
Fuller
,
P. F.
Tekavec
,
C. F.
Yocum
, and
J. P.
Ogilvie
,
J. Phys. Chem. Lett.
1
,
2774
2780
(
2010
).
40.
M.
Maiuri
,
J.
Réhault
,
A.-M.
Carey
,
K.
Hacking
,
M.
Garavelli
,
L.
Lüer
,
D.
Polli
,
R. J.
Cogdell
, and
G.
Cerullo
,
J. Chem. Phys.
142
,
212433
(
2015
).
41.
F.
Milota
,
J.
Sperling
,
A.
Nemeth
,
T.
Mančal
, and
H. F.
Kauffmann
,
Acc. Chem. Res.
42
,
1364
1374
(
2009
).
42.
Y.
Lee
,
S.
Das
,
R. M.
Malamakal
,
S.
Meloni
,
D. M.
Chenoweth
, and
J. M.
Anna
,
J. Am. Chem. Soc.
139
,
14733
14742
(
2017
).
43.
S.
Rafiq
,
M. J.
Bezdek
,
M.
Koch
,
P. J.
Chirik
, and
G. D.
Scholes
,
J. Am. Chem. Soc.
140
,
6298
6307
(
2018
).
44.
D. B.
Turner
,
Y.
Hassan
, and
G. D.
Scholes
,
Nano Lett.
12
,
880
886
(
2012
).
45.
R. D.
Mehlenbacher
,
T. J.
McDonough
,
M.
Grechko
,
M.-Y.
Wu
,
M. S.
Arnold
, and
M. T.
Zanni
,
Nat. Commun.
6
,
6732
(
2015
).
46.
J. W.
Jarrett
,
C.
Yi
,
T.
Stoll
,
J.
Réhault
,
A.
Oriana
,
F.
Branchi
,
G.
Cerullo
, and
K. L.
Knappenberger
, Jr.
,
Nanoscale
9
,
4572
4577
(
2017
).
47.
L.
Wang
,
N. E.
Williams
,
E. W.
Malachosky
,
J. P.
Otto
,
D.
Hayes
,
R. E.
Wood
,
P.
Guyot-Sionnest
, and
G. S.
Engel
,
ACS Nano
11
,
2689
2696
(
2017
).
48.
L.
Guo
,
M.
Wu
,
T.
Cao
,
D. M.
Monahan
,
Y.-H.
Lee
,
S. G.
Louie
, and
G. R.
Fleming
,
Nat. Phys.
15
,
228
232
(
2019
).
49.
T.
Stoll
,
E.
Sgrò
,
J. W.
Jarrett
,
J.
Réhault
,
A.
Oriana
,
L.
Sala
,
F.
Branchi
,
G.
Cerullo
, and
K. L.
Knappenberger
, Jr.
,
J. Am. Chem. Soc.
138
,
1788
1791
(
2016
).
50.
S.
Knoppe
,
J.
Boudon
,
I.
Dolamic
,
A.
Dass
, and
T.
Bürgi
,
Anal. Chem.
83
,
5056
5061
(
2011
).
51.
M. A.
Steves
,
H.
Zheng
, and
K. L.
Knappenberger
, Jr.
,
Opt. Lett.
44
,
2117
2120
(
2019
).
52.
E. M.
Grumstrup
,
S.-H.
Shim
,
M. A.
Montgomery
,
N. H.
Damrauer
, and
M. T.
Zanni
,
Opt. Express
15
,
16681
16689
(
2007
).
53.
F. D.
Fuller
and
J. P.
Ogilvie
,
Annu. Rev. Phys. Chem.
66
,
667
690
(
2015
).
54.
R. D.
Senanayake
,
E. B.
Guidez
,
A. J.
Neukirch
,
O. V.
Prezhdo
, and
C. M.
Aikens
,
J. Phys. Chem. C
122
,
16380
16388
(
2018
).
55.
S.
Pedersen
and
A. H.
Zewail
,
Mol. Phys.
89
,
1455
1502
(
1996
).
56.
A.
Tokmakoff
,
J. Phys. Chem. A
104
,
4247
4255
(
2000
).
57.
S. T.
Roberts
,
J. J.
Loparo
, and
A.
Tokmakoff
,
J. Chem. Phys.
125
,
084502
(
2006
).
58.
Y.
Pei
,
Y.
Gao
, and
X. C.
Zeng
,
J. Am. Chem. Soc.
130
,
7830
7832
(
2008
).
59.
Y.
Song
,
A.
Schubert
,
E.
Maret
,
R. K.
Burdick
,
B. D.
Dunietz
,
E.
Geva
, and
J. P.
Ogilvie
,
Chem. Sci.
10
,
8143
8153
(
2019
).
60.
K. L.
Dimuthu
,
M.
Weerawardene
,
E. B.
Guidez
, and
C.
Aikens
,
J. Phys. Chem. C
121
,
15416
15423
(
2017
).
61.
P. J.
Herbert
,
C. J.
Ackerson
, and
K. L.
Knappenberger
, Jr.
,
J. Phys. Chem. Lett.
12
,
7531
7536
(
2021
).

Supplementary Material

You do not currently have access to this content.