The coupled cluster iteration scheme is analyzed as a multivariate discrete time map using nonlinear dynamics and synergetics. The nonlinearly coupled set of equations to determine the cluster amplitudes are driven by a fraction of the entire set of cluster amplitudes. These driver amplitudes enslave all other amplitudes through a synergistic inter-relationship, where the latter class of amplitudes behave as the auxiliary variables. The driver and the auxiliary variables exhibit vastly different time scales of relaxation during the iteration process to reach the fixed points. The fast varying auxiliary amplitudes are small in magnitude, while the driver amplitudes are large, and they have a much longer time scale of relaxation. Exploiting their difference in relaxation time scale, we employ an adiabatic decoupling approximation, where each of the fast relaxing auxiliary modes is expressed as a unique function of the principal amplitudes. This results in a tremendous reduction in the independent degrees of freedom. On the other hand, only the driver amplitudes are determined accurately via exact coupled cluster equations. We will demonstrate that the iteration scheme has an order of magnitude reduction in computational scaling than the conventional scheme. With a few pilot numerical examples, we would demonstrate that this scheme can achieve very high accuracy with significant savings in computational time.

1.
J.
Čížek
, “
On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in Ursell-type expansion using quantum-field theoretical methods
,”
J. Chem. Phys.
45
,
4256
4266
(
1966
).
2.
J.
Čížek
, “
On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules
,”
Adv. Chem. Phys.
14
,
35
89
(
1969
).
3.
J.
Čížek
and
J.
Paldus
, “
Correlation problems in atomic and molecular systems III. Rederivation of the coupled-pair many-electron theory using the traditional quantum chemical methods
,”
Int. J. Quantum Chem.
5
,
359
379
(
1971
).
4.
R. J.
Bartlett
and
M.
Musiał
, “
Coupled-cluster theory in quantum chemistry
,”
Rev. Mod. Phys.
79
,
291
(
2007
).
5.
P.
Pulay
, “
Convergence acceleration of iterative sequences. The case of scf iteration
,”
Chem. Phys. Lett.
73
,
393
398
(
1980
).
6.
P.
Piecuch
and
L.
Adamowicz
, “
Solving the single-reference coupled-cluster equations involving highly excited clusters in quasidegenerate situations
,”
J. Chem. Phys.
100
,
5857
5869
(
1994
).
7.
E. F.
Kjønstad
,
S. D.
Folkestad
, and
H.
Koch
, “
Accelerated multimodel Newton-type algorithms for faster convergence of ground and excited state coupled cluster equations
,”
J. Chem. Phys.
153
,
014104
(
2020
).
8.
C.
Yang
,
J.
Brabec
,
L.
Veis
,
D. B.
Williams-Young
, and
K.
Kowalski
, “
Solving coupled cluster equations by the Newton Krylov method
,”
Front. Chem.
8
,
590184
(
2020
).
9.
R. M.
Parrish
,
Y.
Zhao
,
E. G.
Hohenstein
, and
T. J.
Martínez
, “
Rank reduced coupled cluster theory. I. Ground state energies and wavefunctions
,”
J. Chem. Phys.
150
,
164118
(
2019
).
10.
E. G.
Hohenstein
,
Y.
Zhao
,
R. M.
Parrish
, and
T. J.
Martínez
, “
Rank reduced coupled cluster theory. II. Equation-of-motion coupled-cluster singles and doubles
,”
J. Chem. Phys.
151
,
164121
(
2019
).
11.
R.
Schutski
,
J.
Zhao
,
T. M.
Henderson
, and
G. E.
Scuseria
, “
Tensor-structured coupled cluster theory
,”
J. Chem. Phys.
147
,
184113
(
2017
).
12.
M.
Lesiuk
, “
Implementation of the coupled-cluster method with single, double, and triple excitations using tensor decompositions
,”
J. Chem. Theory Comput.
16
,
453
467
(
2019
).
13.
A. E.
DePrince
 III
and
C. D.
Sherrill
, “
Accuracy and efficiency of coupled-cluster theory using density fitting/Cholesky decomposition, frozen natural orbitals, and a t1-transformed Hamiltonian
,”
J. Chem. Theory Comput.
9
,
2687
2696
(
2013
).
14.
U.
Bozkaya
and
C. D.
Sherrill
, “
Analytic energy gradients for the coupled-cluster singles and doubles method with the density-fitting approximation
,”
J. Chem. Phys.
144
,
174103
(
2016
).
15.
H.-J.
Werner
and
M.
Schütz
, “
An efficient local coupled cluster method for accurate thermochemistry of large systems
,”
J. Chem. Phys.
135
,
144116
(
2011
).
16.
M.
Schütz
and
F. R.
Manby
, “
Linear scaling local coupled cluster theory with density fitting. Part I: 4-external integrals
,”
Phys. Chem. Chem. Phys.
5
,
3349
3358
(
2003
).
17.
P.
Szakács
and
P. R.
Surján
, “
Iterative solution of Bloch-type equations: Stability conditions and chaotic behavior
,”
J. Math. Chem.
43
,
314
327
(
2008
).
18.
P.
Szakács
and
P. R.
Surján
, “
Stability conditions for the coupled cluster equations
,”
Int. J. Quantum Chem.
108
,
2043
2052
(
2008
).
19.
R.
Maitra
and
T.
Nakajima
, “
Correlation effects beyond coupled cluster singles and doubles approximation through Fock matrix dressing
,”
J. Chem. Phys.
147
,
204108
(
2017
).
20.
R.
Maitra
,
Y.
Akinaga
, and
T.
Nakajima
, “
A coupled cluster theory with iterative inclusion of triple excitations and associated equation of motion formulation for excitation energy and ionization potential
,”
J. Chem. Phys.
147
,
074103
(
2017
).
21.
S.
Tribedi
,
A.
Chakraborty
, and
R.
Maitra
, “
Formulation of a dressed coupled-cluster method with implicit triple excitations and benchmark application to hydrogen-bonded systems
,”
J. Chem. Theory Comput.
16
,
6317
6328
(
2020
).
22.
M. J.
Feigenbaum
, “
Quantitative universality for a class of nonlinear transformations
,”
J. Stat. Phys.
19
,
25
52
(
1978
).
23.
V.
Agarawal
,
A.
Chakraborty
, and
R.
Maitra
, “
Stability analysis of a double similarity transformed coupled cluster theory
,”
J. Chem. Phys.
153
,
084113
(
2020
).
24.
H.
Haken
, “
Synergetics: An overview
,”
Rep. Prog. Phys.
52
,
515
553
(
1989
).
25.
H.
Haken
and
A.
Wunderlin
, “
Slaving principle for stochastic differential equations with additive and multiplicative noise and for discrete noisy maps
,”
Z. Phys. B
47
,
179
187
(
1982
).
26.
H.
Haken
, “
Nonlinear equations. The slaving principle
,” in
Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
1983
), pp.
187
221
.
27.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
,
J.
Vanderplas
,
A.
Passos
,
D.
Cournapeau
,
M.
Brucher
,
M.
Perrot
, and
E.
Duchesnay
, “
Scikit-learn: Machine learning in Python
,”
J. Mach. Learn. Res.
12
,
2825
2830
(
2011
).
28.
V.
Agarawal
,
S.
Roy
,
A.
Chakraborty
, and
R.
Maitra
, “
Accelerating coupled cluster calculations with nonlinear dynamics and supervised machine learning
,”
J. Chem. Phys.
154
,
044110
(
2021
).
29.
M.
Urban
,
J.
Noga
,
S. J.
Cole
, and
R. J.
Bartlett
, “
Towards a full CCSDT model for electron correlation
,”
J. Chem. Phys.
83
,
4041
4046
(
1985
).
30.
Y. S.
Lee
,
S. A.
Kucharski
, and
R. J.
Bartlett
, “
A coupled cluster approach with triple excitations
,”
J. Chem. Phys.
81
,
5906
5912
(
1984
).
31.
J.
Noga
,
R. J.
Bartlett
, and
M.
Urban
, “
Towards a full CCSDT model for electron correlation. CCSDT-n models
,”
Chem. Phys. Lett.
134
,
126
132
(
1987
).
32.
G. E.
Scuseria
and
T. J.
Lee
, “
Comparison of coupled-cluster methods which include the effects of connected triple excitations
,”
J. Chem. Phys.
93
,
5851
5855
(
1990
).
33.
J.
Shen
and
P.
Piecuch
, “
Combining active-space coupled-cluster methods with moment energy corrections via the CC(P; Q) methodology, with benchmark calculations for biradical transition states
,”
J. Chem. Phys.
136
,
144104
(
2012
).
34.
N. P.
Bauman
,
J.
Shen
, and
P.
Piecuch
, “
Combining active-space coupled-cluster approaches with moment energy corrections via the CC(P; Q) methodology: Connected quadruple excitations
,”
Mol. Phys.
115
,
2860
2891
(
2017
).
35.
K.
Kowalski
and
P.
Piecuch
, “
The method of moments of coupled-cluster equations and the renormalized CCSD[T], CCSD(T), CCSD(TQ), and CCSDT(Q) approaches
,”
J. Chem. Phys.
113
,
18
35
(
2000
).
36.
P.
Piecuch
,
J. A.
Hansen
, and
A. O.
Ajala
, “
Benchmarking the completely renormalised equation-of-motion coupled-cluster approaches for vertical excitation energies
,”
Mol. Phys.
113
,
3085
3127
(
2015
).
37.
J.
Shen
and
P.
Piecuch
, “
Merging active-space and renormalized coupled-cluster methods via the CC(P; Q) formalism, with benchmark calculations for singlet–triplet gaps in biradical systems
,”
J. Chem. Theory Comput.
8
,
4968
4988
(
2012
).
38.
K.
Kowalski
,
J.
Brabec
, and
B.
Peng
, “
Regularized and renormalized many-body techniques for describing correlated molecular systems: A coupled-cluster perspective
,”
Annu. Rep. Comput. Chem.
14
,
3
45
(
2018
).
39.
F.
Pawłowski
,
J.
Olsen
, and
P.
Jørgensen
, “
Cluster perturbation theory. I. Theoretical foundation for a coupled cluster target state and ground-state energies
,”
J. Chem. Phys.
150
,
134108
(
2019
).
40.
H.
Haken
, in
Synergetics: Introduction and Advanced Topics
(
Springer Science & Business Media
,
2013
), Chap. 7.
41.
B.
Daino
,
G.
Gregori
, and
S.
Wabnitz
, “
Stability analysis of nonlinear coherent coupling
,”
J. Appl. Phys.
58
,
4512
4514
(
1985
).
42.
S.
Jensen
, “
The nonlinear coherent coupler
,”
IEEE J. Quantum Electron.
18
,
1580
1583
(
1982
).
43.
Y.
Zhiyenbayev
,
Y.
Kominis
,
C.
Valagiannopoulos
,
V.
Kovanis
, and
A.
Bountis
, “
Enhanced stability, bistability, and exceptional points in saturable active photonic couplers
,”
Phys. Rev. A
100
,
043834
(
2019
).
44.
K.
Kowalski
, “
Properties of coupled-cluster equations originating in excitation sub-algebras
,”
J. Chem. Phys.
148
,
094104
(
2018
).
45.
N. P.
Bauman
,
E. J.
Bylaska
,
S.
Krishnamoorthy
,
G. H.
Low
,
N.
Wiebe
,
C. E.
Granade
,
M.
Roetteler
,
M.
Troyer
, and
K.
Kowalski
, “
Downfolding of many-body Hamiltonians using active-space models: Extension of the sub-system embedding sub-algebras approach to unitary coupled cluster formalisms
,”
J. Chem. Phys.
151
,
014107
(
2019
).

Supplementary Material

You do not currently have access to this content.