The localization spread gives a criterion to decide between metallic and insulating behavior of a material. It is defined as the second moment cumulant of the many-body position operator, divided by the number of electrons. Different operators are used for systems treated with open or periodic boundary conditions. In particular, in the case of periodic systems, we use the complex position definition, which was already used in similar contexts for the treatment of both classical and quantum situations. In this study, we show that the localization spread evaluated on a finite ring system of radius R with open boundary conditions leads, in the large R limit, to the same formula derived by Resta and co-workers [C. Sgiarovello, M. Peressi, and R. Resta, Phys. Rev. B 64, 115202 (2001)] for 1D systems with periodic Born–von Kármán boundary conditions. A second formula, alternative to Resta’s, is also given based on the sum-over-state formalism, allowing for an interesting generalization to polarizability and other similar quantities.

1.
2.
R.
Resta
and
S.
Sorella
,
Phys. Rev. Lett.
82
,
370
(
1999
).
3.
R.
Resta
,
J. Phys.: Condens. Matter
14
,
R625
(
2002
).
4.
R.
Resta
,
J. Chem. Phys.
124
,
104104
(
2006
).
5.
I.
Souza
,
T.
Wilkens
, and
R. M.
Martin
,
Phys. Rev. B
62
,
1666
(
2000
).
7.
A.
Diaz-Marquez
,
S.
Battaglia
,
G. L.
Bendazzoli
,
S.
Evangelisti
,
T.
Leininger
, and
J. A.
Berger
,
J. Chem. Phys.
148
,
124103
(
2018
).
8.
L.
Brooke
,
A.
Diaz-Marquez
,
S.
Evangelisti
,
T.
Leininger
,
P.-F.
Loos
,
N.
Suaud
, and
J. A.
Berger
,
J. Mol. Model.
24
,
216
(
2018
).
9.
M. E.
Azor
,
L.
Brooke
,
S.
Evangelisti
,
T.
Leininger
,
P.-F.
Loos
,
N.
Suaud
, and
A.
Berger
,
SciPost Phys. Core
1
,
1
(
2019
).
10.
S.
Evangelisti
,
G. L.
Bendazzoli
, and
A.
Monari
,
Theor. Chem. Acc.
126
,
257
263
(
2010
).
11.
A.
Monari
and
S.
Evangelisti
, “
Finite-size effects in graphene nanostructures
,” in
Physics and Applications of Graphene—Theory
(
IntechOpen
,
Wien
,
2011
).
13.
E. K.
Kudinov
,
Fiz. Tverd. Tela
33
,
2306
(
1991
).
14.
E. K.
Kudinov
, arXiv:9902361v1 (
1999
).
15.
E. K.
Kudinov
,
Phys. Solid State
41
,
1450
(
1999
).
16.
C.
Angeli
,
G. L.
Bendazzoli
, and
S.
Evangelisti
,
J. Chem. Phys.
138
,
054314
(
2013
).
17.
O.
Brea
,
M.
El Khatib
,
C.
Angeli
,
G. L.
Bendazzoli
,
S.
Evangelisti
, and
T.
Leininger
,
J. Chem. Theory Comput.
9
,
5286
(
2013
).
18.
M.
El Khatib
,
T.
Leininger
,
G. L.
Bendazzoli
, and
S.
Evangelisti
,
Chem. Phys. Lett.
591
,
58
(
2014
).
19.
G. L.
Bendazzoli
,
M.
El Khatib
,
S.
Evangelisti
, and
T.
Leininger
,
J. Comput. Chem.
35
,
802
(
2014
).
20.
M.
El Khatib
,
O.
Brea
,
E.
Fertitta
,
G. L.
Bendazzoli
,
S.
Evangelisti
, and
T.
Leininger
,
J. Chem. Phys.
142
,
094113
(
2015
).
21.
A. W.
Huran
,
T.
Leininger
,
G. L.
Bendazzoli
, and
S.
Evangelisti
,
Chem. Phys. Lett.
664
,
120
(
2016
).
22.
V.
Vetere
,
A.
Monari
,
G. L.
Bendazzoli
,
S.
Evangelisti
, and
B.
Paulus
,
J. Chem. Phys.
128
,
024701
(
2008
).
23.
G. L.
Bendazzoli
,
S.
Evangelisti
,
A.
Monari
,
B.
Paulus
, and
V.
Vetere
,
J. Phys.: Conf. Ser.
117
,
012005
(
2008
).
24.
A.
Monari
,
G. L.
Bendazzoli
, and
S.
Evangelisti
,
J. Chem. Phys.
129
,
134104
(
2008
).
25.
V.
Vetere
,
A.
Monari
,
A.
Scemama
,
G. L.
Bendazzoli
, and
S.
Evangelisti
,
J. Chem. Phys.
130
,
024301
(
2009
).
26.
G. L.
Bendazzoli
,
S.
Evangelisti
, and
A.
Monari
,
Int. J. Quantum Chem.
111
,
3416
(
2011
).
27.
G. L.
Bendazzoli
,
S.
Evangelisti
, and
A.
Monari
,
Int. J. Quantum Chem.
112
,
653
(
2012
).
28.
M.
El Khatib
,
O.
Brea
,
E.
Fertitta
,
G. L.
Bendazzoli
,
S.
Evangelisti
,
T.
Leininger
, and
B.
Paulus
,
Theor. Chem. Acc.
134
,
29
(
2015
).
29.
E.
Fertitta
,
M.
El Khatib
,
G. L.
Bendazzoli
,
B.
Paulus
,
S.
Evangelisti
, and
T.
Leininger
,
J. Chem. Phys.
143
,
244308
(
2015
).
30.
S.
Battaglia
,
H.-A.
Le
,
G. L.
Bendazzoli
,
N.
Faginas-Lago
,
T.
Leininger
, and
S.
Evangelisti
,
Int. J. Quantum Chem.
118
,
e25569
(
2018
).
31.
A. W.
Huran
,
N.
Ben Amor
,
S.
Evangelisti
,
S.
Hoyau
,
T.
Leininger
, and
V.
Brumas
,
J. Phys. Chem. A
122
,
5321
(
2018
).
32.
C.
Sgiarovello
,
M.
Peressi
, and
R.
Resta
,
Phys. Rev. B
64
,
115202
(
2001
).
33.
E.
Valença Ferreira de Aragão
,
D.
Moreno
,
S.
Battaglia
,
G. L.
Bendazzoli
,
S.
Evangelisti
,
T.
Leininger
,
N.
Suaud
, and
J. A.
Berger
,
Phys. Rev. B
99
,
205144
(
2019
).
34.
N.
Tavernier
,
G. L.
Bendazzoli
,
V.
Brumas
,
S.
Evangelisti
, and
J. A.
Berger
,
J. Phys. Chem. Lett.
11
,
7090
(
2020
).
35.
N.
Tavernier
,
G. L.
Bendazzoli
,
V.
Brumas
,
S.
Evangelisti
, and
J. A.
Berger
,
Theor. Chem. Acc.
140
,
106
(
2021
).
36.
E.
Alves
,
G. L.
Bendazzoli
,
S.
Evangelisti
, and
J. A.
Berger
,
Phys. Rev. B
103
,
245125
(
2021
).
37.
M. S.
Dresselhaus
,
G.
Dresselhaus
, and
A.
Jorio
,
Group Theory: Application to the Physics of Condensed Matter
(
Springer-Verlag Berlin Heidelberg
,
2008
).
38.
J. L.
Calais
,
B. T.
Pickup
,
M.
Deleuze
, and
J.
Delhalle
,
Eur. J. Phys.
16
,
179
(
1995
).
39.
B. D.
Craven
,
J. Aust. Math. Soc., Ser. B
26
,
362
374
(
1985
).
40.
W.
Kutzelnigg
,
J. Comput. Chem.
28
,
25
(
2007
).
41.

Strictly this holds for n > 2.

42.
J. O.
Hirschfelder
,
W. B.
Brown
, and
S. T.
Epstein
, in
Recent Developments in Perturbation Theory
, Advances in Quantum Chemistry, edited by
P.-O.
Löwdin
(
Academic Press
,
1964
), Vol. 1, pp.
255
374
.
43.
Wolfram Research, Inc.
, Mathematica, Version 12.1,
Champaign, IL
,
2020
.
44.
G. L.
Bendazzoli
,
S.
Evangelisti
,
A.
Monari
, and
R.
Resta
,
J. Chem. Phys.
133
,
064703
(
2010
).

Supplementary Material

You do not currently have access to this content.