Model Hamiltonians constructed from quantum chemistry calculations and molecular dynamics simulations are widely used for simulating nonadiabatic dynamics in the condensed phase. The most popular two-state spin-boson model could be built by mapping the all-atom anharmonic Hamiltonian onto a two-level system bilinearly coupled to a harmonic bath using the energy gap time correlation function. However, for more than two states, there lacks a general strategy to construct multi-state harmonic (MSH) models since the energy gaps between different pairs of electronic states are not entirely independent and need to be considered consistently. In this paper, we extend the previously proposed approach for building three-state harmonic models for photoinduced charge transfer to the arbitrary number of electronic states with a globally shared bath and the system–bath couplings are scaled differently according to the reorganization energies between each pair of states. We demonstrate the MSH model construction for an organic photovoltaic carotenoid–porphyrin–C60 molecular triad dissolved in explicit tetrahydrofuran solvent. Nonadiabatic dynamics was simulated using mixed quantum-classical techniques, including the linearized semiclassical and symmetrical quasiclassical dynamics with the mapping Hamiltonians, mean-field Ehrenfest, and mixed quantum-classical Liouville dynamics in two-state, three-state, and four-state harmonic models of the triad system. The MSH models are shown to provide a general and flexible framework for simulating nonadiabatic dynamics in complex systems.

1.
J.
Kurpiers
,
T.
Ferron
,
S.
Roland
,
M.
Jakoby
,
T.
Thiede
,
F.
Jaiser
,
S.
Albrecht
,
S.
Janietz
,
B. A.
Collins
,
I. A.
Howard
, and
D.
Neher
, “
Probing the pathways of free charge generation in organic bulk heterojunction solar cells
,”
Nat. Commun.
9
,
2038
(
2018
).
2.
S. M.
Falke
,
C. A.
Rozzi
,
D.
Brida
,
M.
Maiuri
,
M.
Amato
,
E.
Sommer
,
A.
De Sio
,
A.
Rubio
,
G.
Cerullo
,
E.
Molinari
, and
C.
Lienau
, “
Coherent ultrafast charge transfer in an organic photovoltaic blend
,”
Science
344
,
1001
1005
(
2014
).
3.
H. M.
Heitzer
,
B. M.
Savoie
,
T. J.
Marks
, and
M. A.
Ratner
, “
Organic photovoltaics: Elucidating the ultra-fast exciton dissociation mechanism in disordered materials
,”
Angew. Chem., Int. Ed.
53
,
7456
7460
(
2014
).
4.
J.
Adolphs
and
T.
Renger
, “
How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria
,”
Biophys. J.
91
,
2778
2797
(
2006
).
5.
A.
Ishizaki
and
G. R.
Fleming
, “
Quantum coherence in photosynthetic light harvesting
,”
Annu. Rev. Condens. Matter Phys.
3
,
333
361
(
2012
).
6.
H.-G.
Duan
,
V. I.
Prokhorenko
,
R. J.
Cogdell
,
K.
Ashraf
,
A. L.
Stevens
,
M.
Thorwart
, and
R. J. D.
Miller
, “
Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
8493
8498
(
2017
).
7.
S.
Choi
and
J.
Vaníček
, “
Which form of the molecular Hamiltonian is the most suitable for simulating the nonadiabatic quantum dynamics at a conical intersection?
,”
J. Chem. Phys.
153
,
211101
(
2020
).
8.
I. G.
Ryabinkin
,
L.
Joubert-Doriol
, and
A. F.
Izmaylov
, “
Geometric phase effects in nonadiabatic dynamics near conical intersections
,”
Acc. Chem. Res.
50
,
1785
1793
(
2017
).
9.
T.
Begušić
and
J.
Vaníček
, “
Finite-temperature, anharmonicity, and duschinsky effects on the two-dimensional electronic spectra from ab initio thermo-field Gaussian wavepacket dynamics
,”
J. Phys. Chem. Lett.
12
,
2997
3005
(
2021
).
10.
X.
Li
,
A.
Mandal
, and
P.
Huo
, “
Cavity frequency-dependent theory for vibrational polariton chemistry
,”
Nat. Commun.
12
,
1315
(
2021
).
11.
X.
Chen
and
R. J.
Silbey
, “
Effect of correlation of local fluctuations on exciton coherence
,”
J. Chem. Phys.
132
,
204503
(
2010
).
12.
S. M.
Vlaming
and
R. J.
Silbey
, “
Correlated interaction fluctuations in photosynthetic complexes
,”
J. Chem. Phys.
136
,
055102
(
2012
).
13.
J.
Strümpfer
and
K.
Schulten
, “
The effect of correlated bath fluctuations on exciton transfer
,”
J. Chem. Phys.
134
,
095102
(
2011
).
14.
P.
Huo
and
D. F.
Coker
, “
Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems
,”
J. Chem. Phys.
136
,
115102
(
2012
).
15.
N.
Lambert
,
S.
Ahmed
,
M.
Cirio
, and
F.
Nori
, “
Modelling the ultra-strongly coupled spin-boson model with unphysical modes
,”
Nat. Commun.
10
,
3721
3729
(
2019
).
16.
J.
Provazza
,
F.
Segatta
, and
D. F.
Coker
, “
Modeling nonperturbative field-driven vibronic dynamics: Selective state preparation and nonlinear spectroscopy
,”
J. Chem. Theory Comput.
17
,
29
39
(
2021
).
17.
K.
Polley
and
R. F.
Loring
, “
Two-dimensional vibrational-electronic spectra with semiclassical mechanics
,”
J. Chem. Phys.
154
,
194110
(
2021
).
18.
X.
Gao
and
E.
Geva
, “
A nonperturbative methodology for simulating multidimensional spectra of multiexcitonic molecular systems via quasiclassical mapping Hamiltonian methods
,”
J. Chem. Theory Comput.
16
,
6491
6502
(
2020
).
19.
X.
Gao
,
Y.
Lai
, and
E.
Geva
, “
Simulating absorption spectra of multiexcitonic systems via quasiclassical mapping Hamiltonian methods
,”
J. Chem. Theory Comput.
16
,
6465
6480
(
2020
).
20.
C. W.
Kim
and
I.
Franco
, “
Theory of dissipation pathways in open quantum systems
,”
J. Chem. Phys.
154
,
084109
(
2021
).
21.
J.
Liu
and
D.
Segal
, “
Interplay of direct and indirect charge-transfer pathways in donor–bridge–acceptor systems
,”
J. Phys. Chem. B
123
,
6099
6110
(
2019
).
22.
R. D.
Teo
,
R.
Wang
,
E. R.
Smithwick
,
A.
Migliore
,
M. J.
Therien
, and
D. N.
Beratan
, “
Mapping hole hopping escape routes in proteins
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
15811
15816
(
2019
).
23.
U.
Weiss
,
Quantum Dissipative Systems
(
World Scientific
,
London
,
2012
).
24.
D.
Xu
and
K.
Schulten
, “
Coupling of protein motion to electron transfer in a photosynthetic reaction center: Investigating the low temperature behavior in the framework of the spin-boson model
,”
Chem. Phys.
182
,
91
117
(
1994
).
25.
P. L.
Walters
,
T. C.
Allen
, and
N.
Makri
, “
Direct determination of discrete harmonic bath parameters from molecular dynamics simulations
,”
J. Comput. Chem.
38
,
110
115
(
2017
).
26.
Z.
Tong
,
X.
Gao
,
M. S.
Cheung
,
B. D.
Dunietz
,
E.
Geva
, and
X.
Sun
, “
Charge transfer rate constants for the carotenoid-porphyrin-C60 molecular triad dissolved in tetrahydrofuran: The spin-boson model vs the linearized semiclassical approximation
,”
J. Chem. Phys.
153
,
044105
(
2020
).
27.
X.
Sun
and
E.
Geva
, “
Equilibrium Fermi’s golden rule charge transfer rate constants in the condensed phase: The linearized semiclassical method vs classical Marcus theory
,”
J. Phys. Chem. A
120
,
2976
2990
(
2016
).
28.
X.
Sun
and
E.
Geva
, “
Exact vs. asymptotic spectral densities in the Garg-Onuchic-Ambegaokar charge transfer model and its effect on Fermi’s golden rule rate constants
,”
J. Chem. Phys.
144
,
044106
(
2016
).
29.
M.
Cho
and
R. J.
Silbey
, “
Nonequilibrium photoinduced electron transfer
,”
J. Chem. Phys.
103
,
595
606
(
1995
).
30.
D.
Brian
,
Z.
Liu
,
B. D.
Dunietz
,
E.
Geva
, and
X.
Sun
, “
Three-state harmonic models for photoinduced charge transfer
,”
J. Chem. Phys.
154
,
174105
(
2021
).
31.
X.
Sun
and
E.
Geva
, “
Nonequilibrium Fermi’s golden rule charge transfer rates via the linearized semiclassical method
,”
J. Chem. Theory Comput.
12
,
2926
2941
(
2016
).
32.
X.
Sun
and
E.
Geva
, “
Non-Condon nonequilibrium Fermi’s golden rule rates from the linearized semiclassical method
,”
J. Chem. Phys.
145
,
064109
(
2016
).
33.
Z.
Hu
,
Z.
Tong
,
M. S.
Cheung
,
B. D.
Dunietz
,
E.
Geva
, and
X.
Sun
, “
Photoinduced charge transfer dynamics in the carotenoid–porphyrin–C60 triad via the linearized semiclassical nonequilibrium Fermi’s golden rule
,”
J. Phys. Chem. B
124
,
9579
9591
(
2020
).
34.
D.
Brian
and
X.
Sun
, “
Linear-response and nonlinear-response formulations of the instantaneous Marcus theory for nonequilibrium photoinduced charge transfer
,”
J. Chem. Theory Comput.
17
,
2065
2079
(
2021
).
35.
P. A.
Liddell
,
D.
Kuciauskas
,
J. P.
Sumida
,
B.
Nash
,
D.
Nguyen
,
A. L.
Moore
,
T. A.
Moore
, and
D.
Gust
, “
Photoinduced charge separation and charge recombination to a triplet state in a carotene–porphyrin–fullerene triad
,”
J. Am. Chem. Soc.
119
,
1400
1405
(
1997
).
36.
D.
Kuciauskas
,
P. A.
Liddell
,
S.
Lin
,
S. G.
Stone
,
A. L.
Moore
,
T. A.
Moore
, and
D.
Gust
, “
Photoinduced electron transfer in carotenoporphyrin–fullerene triads: Temperature and solvent effects
,”
J. Phys. Chem. B
104
,
4307
4321
(
2000
).
37.
C.
Andrea Rozzi
,
S.
Maria Falke
,
N.
Spallanzani
,
A.
Rubio
,
E.
Molinari
,
D.
Brida
,
M.
Maiuri
,
G.
Cerullo
,
H.
Schramm
,
J.
Christoffers
, and
C.
Lienau
, “
Quantum coherence controls the charge separation in a prototypical artificial light–harvesting system
,”
Nat. Commun.
4
,
1602
1607
(
2013
).
38.
A. K.
Manna
,
D.
Balamurugan
,
M. S.
Cheung
, and
B. D.
Dunietz
, “
Unraveling the mechanism of photoinduced charge transfer in carotenoid–porphyrin–C60 molecular triad
,”
J. Phys. Chem. Lett.
6
,
1231
1237
(
2015
).
39.
X.
Sun
,
P.
Zhang
,
Y.
Lai
,
K. L.
Williams
,
M. S.
Cheung
,
B. D.
Dunietz
, and
E.
Geva
, “
Computational study of charge-transfer dynamics in the carotenoid–porphyrin–C60 molecular triad solvated in explicit tetrahydrofuran and its spectroscopic signature
,”
J. Phys. Chem. C
122
,
11288
11299
(
2018
).
40.
E.
Mulvihill
,
A.
Schubert
,
X.
Sun
,
B. D.
Dunietz
, and
E.
Geva
, “
A modified approach for simulating electronically nonadiabatic dynamics via the generalized quantum master equation
,”
J. Chem. Phys.
150
,
034101
(
2019
).
41.
X.
Gao
,
M. A. C.
Saller
,
Y.
Liu
,
A.
Kelly
,
J. O.
Richardson
, and
E.
Geva
, “
Benchmarking quasiclassical mapping Hamiltonian methods for simulating electronically nonadiabatic molecular dynamics
,”
J. Chem. Theory Comput.
16
,
2883
2895
(
2020
).
42.
Y.
Liu
,
X.
Gao
,
Y.
Lai
,
E.
Mulvihill
, and
E.
Geva
, “
Electronic dynamics through conical intersections via quasiclassical mapping Hamiltonian methods
,”
J. Chem. Theory Comput.
16
,
4479
4488
(
2020
).
43.
M. A. C.
Saller
,
A.
Kelly
, and
J. O.
Richardson
, “
On the identity of the identity operator in nonadiabatic linearized semiclassical dynamics
,”
J. Chem. Phys.
150
,
071101
(
2019
).
44.
M. A. C.
Saller
,
A.
Kelly
, and
J. O.
Richardson
, “
Improved population operators for multi-state nonadiabatic dynamics with the mixed quantum-classical mapping approach
,”
Faraday Discuss.
221
,
150
167
(
2020
).
45.
S. J.
Cotton
and
W. H.
Miller
, “
Symmetrical windowing for quantum states in quasi-classical trajectory simulations: Application to electronically non-adiabatic processes
,”
J. Chem. Phys.
139
,
234112
(
2013
).
46.
S. J.
Cotton
,
K.
Igumenshchev
, and
W. H.
Miller
, “
Symmetrical windowing for quantum states in quasi-classical trajectory simulations: Application to electron transfer
,”
J. Chem. Phys.
141
,
084104
(
2014
).
47.
W. H.
Miller
and
S. J.
Cotton
, “
Communication: Wigner functions in action-angle variables, Bohr-Sommerfeld quantization, the Heisenberg correspondence principle, and a symmetrical quasi-classical approach to the full electronic density matrix
,”
J. Chem. Phys.
145
,
081102
(
2016
).
48.
S. J.
Cotton
and
W. H.
Miller
, “
A new symmetrical quasi-classical model for electronically non-adiabatic processes: Application to the case of weak non-adiabatic coupling
,”
J. Chem. Phys.
145
,
144108
(
2016
).
49.
S. J.
Cotton
,
R.
Liang
, and
W. H.
Miller
, “
On the adiabatic representation of Meyer-Miller electronic-nuclear dynamics
,”
J. Chem. Phys.
147
,
064112
(
2017
).
50.
S. J.
Cotton
and
W. H.
Miller
, “
A symmetrical quasi-classical windowing model for the molecular dynamics treatment of non-adiabatic processes involving many electronic states
,”
J. Chem. Phys.
150
,
104101
(
2019
).
51.
P.
Ehrenfest
, “
Comment on the approximate validity of classical mechanics within quantum mechanics
,”
Z. Phys.
45
,
455
457
(
1927
).
52.
A. D.
McLachlan
, “
A variational solution of the time-dependent Schrodinger equation
,”
Mol. Phys.
8
,
39
44
(
1964
).
53.
D.
MacKernan
,
R.
Kapral
, and
G.
Ciccotti
, “
Sequential short-time propagation of quantum-classical dynamics
,”
J. Phys.: Condens. Matter
14
,
9069
9076
(
2002
).
54.
D.
Mac Kernan
,
G.
Ciccotti
, and
R.
Kapral
, “
Trotter-based simulation of quantum-classical dynamics
,”
J. Phys. Chem. B
112
,
424
432
(
2008
).
55.
A. A.
Voityuk
and
N.
Rösch
, “
Fragment charge difference method for estimating donor–acceptor electronic coupling: Application to DNA π-stacks
,”
J. Chem. Phys.
117
,
5607
5616
(
2002
).
56.
H.-D.
Meyer
and
W. H.
Miller
, “
A classical analog for electronic degrees of freedom in nonadiabatic collision processes
,”
J. Chem. Phys.
70
,
3214
3223
(
1979
).
57.
G.
Stock
and
M.
Thoss
, “
Semiclassical description of nonadiabatic quantum dynamics
,”
Phys. Rev. Lett.
78
,
578
581
(
1997
).
58.
J.
Schwinger
,
On Angular Momentum
(
Dover Publications
,
Mineola, NY
,
2015
).
59.
J.
Liu
, “
A unified theoretical framework for mapping models for the multi-state Hamiltonian
,”
J. Chem. Phys.
145
,
204105
(
2016
).
60.
X.
He
and
J.
Liu
, “
A new perspective for nonadiabatic dynamics with phase space mapping models
,”
J. Chem. Phys.
151
,
024105
(
2019
).
61.
J. E.
Runeson
and
J. O.
Richardson
, “
Spin-mapping approach for nonadiabatic molecular dynamics
,”
J. Chem. Phys.
151
,
044119
(
2019
).
62.
J. E.
Runeson
and
J. O.
Richardson
, “
Generalized spin mapping for quantum-classical dynamics
,”
J. Chem. Phys.
152
,
084110
(
2020
).
63.
J. R.
Mannouch
and
J. O.
Richardson
, “
A partially linearized spin-mapping approach for nonadiabatic dynamics. I. Derivation of the theory
,”
J. Chem. Phys.
153
,
194109
(
2020
).
64.
Q.
Shi
and
E.
Geva
, “
Vibrational energy relaxation in liquid oxygen from a semiclassical molecular dynamics simulation
,”
J. Phys. Chem. A
107
,
9070
9078
(
2003
).
65.
Q.
Shi
and
E.
Geva
, “
Vibrational energy relaxation rate constants from linear response theory
,”
J. Chem. Phys.
118
,
7562
(
2003
).
66.
Q.
Shi
and
E.
Geva
, “
Nonradiative electronic relaxation rate constants from approximations based on linearizing the path-integral forward-backward action
,”
J. Phys. Chem. A
108
,
6109
6116
(
2004
).
67.
Q.
Shi
and
E.
Geva
, “
A derivation of the mixed quantum-classical Liouville equation from the influence functional formalism
,”
J. Chem. Phys.
121
,
3393
3404
(
2004
).
68.
Q.
Shi
and
E.
Geva
, “
A semiclassical generalized quantum master equation for an arbitrary system-bath coupling
,”
J. Chem. Phys.
120
,
10647
(
2004
).
69.
Q.
Shi
and
E.
Geva
, “
A comparison between different semiclassical approximations for optical response functions in nonpolar liquid solutions
,”
J. Chem. Phys.
122
,
064506
(
2005
).
70.
Q.
Shi
and
E.
Geva
, “
A comparison between different semiclassical approximations for optical response functions in nonpolar liquid solution. II. The signature of excited state dynamics on two-dimensional spectra
,”
J. Chem. Phys.
129
,
124505
(
2008
).
71.
B. J.
Ka
,
Q.
Shi
, and
E.
Geva
, “
Vibrational energy relaxation rates via the linearized semiclassical approximation: Applications to neat diatomic liquids and atomic-diatomic liquid mixtures
,”
J. Phys. Chem. A
109
,
5527
5536
(
2005
).
72.
B. J.
Ka
and
E.
Geva
, “
Vibrational energy relaxation of polyatomic molecules in liquid solution via the linearized semiclassical method
,”
J. Phys. Chem. A
110
,
9555
9567
(
2006
).
73.
F. X.
Vázquez
,
I.
Navrotskaya
, and
E.
Geva
, “
Vibrational energy relaxation rates via the linearized semiclassical method without force derivatives
,”
J. Phys. Chem. A
114
,
5682
5688
(
2010
).
74.
F. X.
Vázquez
,
S.
Talapatra
, and
E.
Geva
, “
Vibrational energy relaxation in liquid HCl and DCl via the linearized semiclassical method: Electrostriction versus quantum delocalization
,”
J. Phys. Chem. A
115
,
9775
9781
(
2011
).
75.
P. L.
McRobbie
and
E.
Geva
, “
A benchmark study of different methods for calculating one- and two-dimensional optical spectra
,”
J. Phys. Chem. A
113
,
10425
10434
(
2009
).
76.
H.
Kim
,
A.
Nassimi
, and
R.
Kapral
, “
Quantum-classical Liouville dynamics in the mapping basis
,”
J. Chem. Phys.
129
,
084102
(
2008
).
77.
X.
Sun
,
H.
Wang
, and
W. H.
Miller
, “
Semiclassical theory of electronically nonadiabatic dynamics: Results of a linearized approximation to the initial value representation
,”
J. Chem. Phys.
109
,
7064
(
1998
).
78.
M. A. C.
Saller
,
A.
Kelly
, and
E.
Geva
, “
Benchmarking quasiclassical mapping Hamiltonian methods for simulating cavity-modified molecular dynamics
,”
J. Phys. Chem. Lett.
12
,
3163
3170
(
2021
).
79.
R.
Baer
and
D.
Neuhauser
, “
Density functional theory with correct long-range asymptotic behavior
,”
Phys. Rev. Lett.
94
,
043002
(
2005
).
80.
E.
Livshits
and
R.
Baer
, “
A well-tempered density functional theory of electrons in molecules
,”
Phys. Chem. Chem. Phys.
9
,
2932
2941
(
2007
).
81.
T.
Stein
,
H.
Eisenberg
,
L.
Kronik
, and
R.
Baer
, “
Fundamental gaps in finite systems from eigenvalues of a generalized Kohn-Sham method
,”
Phys. Rev. Lett.
105
,
266802
(
2010
).
82.
D. A.
Case
,
I. Y.
Ben-Shalom
,
S. R.
Brozell
,
D. S.
Cerutti
,
T. E.
Cheatham
 III
,
V. W. D.
Cruzeiro
,
T. A.
Darden
,
R. E.
Duke
,
D.
Ghoreishi
,
M. K.
Gilson
,
H.
Gohlke
,
A. W.
Goetz
 et al., AMBER 2018,
University of California
,
San Francisco
,
2018
.
83.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems
,”
J. Chem. Phys.
98
,
10089
10092
(
1993
).
84.
G.
Ciccotti
and
J. P.
Ryckaert
, “
Molecular dynamics simulation of rigid molecules
,”
Comput. Phys. Rep.
4
,
346
392
(
1986
).
85.
A. A.
Kananenka
,
X.
Sun
,
A.
Schubert
,
B. D.
Dunietz
, and
E.
Geva
, “
A comparative study of different methods for calculating electronic transition rates
,”
J. Chem. Phys.
148
,
102304
(
2018
).
86.
S.
Bonella
and
D. F.
Coker
, “
A semiclassical limit for the mapping Hamiltonian approach to electronically nonadiabatic dynamics
,”
J. Chem. Phys.
114
,
7778
7789
(
2001
).
87.
E. A.
Coronado
,
J.
Xing
, and
W. H.
Miller
, “
Ultrafast non-adiabatic dynamics of systems with multiple surface crossings: A test of the Meyer–Miller Hamiltonian with semiclassical initial value representation methods
,”
Chem. Phys. Lett.
349
,
521
529
(
2001
).
88.
N.
Bellonzi
,
A.
Jain
, and
J. E.
Subotnik
, “
An assessment of mean-field mixed semiclassical approaches: Equilibrium populations and algorithm stability
,”
J. Chem. Phys.
144
,
154110
(
2016
).
89.
X.
Gao
and
E.
Geva
, “
Improving the accuracy of quasiclassical mapping Hamiltonian methods by treating the window function width as an adjustable parameter
,”
J. Phys. Chem. A
124
,
11006
11016
(
2020
).
90.
X.
He
,
Z.
Gong
,
B.
Wu
, and
J.
Liu
, “
Negative zero-point-energy parameter in the Meyer–Miller mapping model for nonadiabatic dynamics
,”
J. Phys. Chem. Lett.
12
,
2496
2501
(
2021
).
91.
S. J.
Cotton
and
W. H.
Miller
, “
Trajectory-adjusted electronic zero point energy in classical Meyer–Miller vibronic dynamics: Symmetrical quasiclassical application to photodissociation
,”
J. Chem. Phys.
150
,
194110
(
2019
).
92.
S. M.
Greene
and
V. S.
Batista
, “
Tensor-train split-operator fourier transform (TT-SOFT) method: Multidimensional nonadiabatic quantum dynamics
,”
J. Chem. Theory Comput.
13
,
4034
4042
(
2017
).
93.
E.
Mulvihill
,
X.
Gao
,
Y.
Liu
,
A.
Schubert
,
B. D.
Dunietz
, and
E.
Geva
, “
Combining the mapping Hamiltonian linearized semiclassical approach with the generalized quantum master equation to simulate electronically nonadiabatic molecular dynamics
,”
J. Chem. Phys.
151
,
074103
(
2019
).
94.
Y.
Tanimura
, “
Numerically ‘exact’ approach to open quantum dynamics: The hierarchical equations of motion (HEOM)
,”
J. Chem. Phys.
153
,
020901
(
2020
).
95.
Y.
Yan
,
T.
Xing
, and
Q.
Shi
, “
A new method to improve the numerical stability of the hierarchical equations of motion for discrete harmonic oscillator modes
,”
J. Chem. Phys.
153
,
204109
(
2020
).
96.
Y.
Yan
,
M.
Xu
,
T.
Li
, and
Q.
Shi
, “
Efficient propagation of the hierarchical equations of motion using the tucker and hierarchical tucker tensors
,”
J. Chem. Phys.
154
,
194104
(
2021
).

Supplementary Material

You do not currently have access to this content.