Property-optimized Gaussian basis sets of split-valence, triple-zeta valence, and quadruple-zeta valence quality are developed for the lanthanides Ce–Lu for use with small-core relativistic effective core potentials. They are constructed in a systematic fashion by augmenting def2 orbital basis sets with diffuse basis functions and minimizing negative static isotropic polarizabilities of lanthanide atoms with respect to basis set exponents within the unrestricted Hartree–Fock method. The basis set quality is assessed using a test set of 70 molecules containing the lanthanides in their common oxidation states and f electron occupations. 5d orbital occupation turns out to be the determining factor for the basis set convergence of polarizabilities in lanthanide atoms and the molecular test set. Therefore, two series of property-optimized basis sets are defined. The augmented def2-SVPD, def2-TZVPPD, and def2-QZVPPD basis sets balance the accuracy of polarizabilities across lanthanide oxidation states. The relative errors in atomic and molecular polarizability calculations are ≤8% for augmented split-valence basis sets, ≤ 2.5% for augmented triple-zeta valence basis sets, and ≤1% for augmented quadruple-zeta valence basis sets. In addition, extended def2-TZVPPDD and def2-QZVPPDD are provided for accurate calculations of lanthanide atoms and neutral clusters. The property-optimized basis sets developed in this work are shown to accurately reproduce electronic absorption spectra of a series of LnCp3 complexes (Cp′ = C5H4SiMe3, Ln = Ce–Nd, Sm) with time-dependent density functional theory.

1.
L.
Brewer
, “
Systematics and the properties of the lanthanides
,” in
Systematics and the Properties of the Lanthanides
, edited by
S. P.
Sinha
(
Springer
,
Dordrecht
,
1983
), pp.
17
69
.
2.
J. E.
Sansonetti
and
W. C.
Martin
, “
Handbook of basic atomic spectroscopic data
,”
J. Phys. Chem. Ref. Data
34
,
1559
2259
(
2005
).
3.
K.
Balasubramanian
, “
Relativistic effects and electronic structure of lanthanide and actinide molecules
,” in
Handbook on the Physics and Chemistry of Rare Earths
, edited by
K. A.
Gschneidner
, Jr.
,
L.
Eyring
,
G. R.
Choppin
, and
G. H.
Lander
(
Elsevier
,
Amsterdam
,
1994
), Vol. 18, Chap. 119, pp.
29
158
.
4.
M.
Dolg
and
H.
Stoll
, “
Electronic structure calculations for molecules containing lanthanide atoms
,” in
Handbook on the Physics and Chemistry of Rare Earths
, edited by
K. A.
Gschneidner
, Jr.
and
L.
Eyring
(
Elsevier
,
Amsterdam
,
1996
), Vol. 22, Chap. 152, pp.
607
729
.
5.
Computational Methods in Lanthanide and Actinide Chemistry
, edited by
M.
Dolg
(
Wiley
,
Chichester
,
2015
), see https://onlinelibrary.wiley.com/doi/book/10.1002/9781118688304.
6.
K. A.
Peterson
and
K. G.
Dyall
, “
Gaussian basis sets for lanthanide and actinide elements: Strategies for their development and use
,” in
Computational Methods in Lanthanide and Actinide Chemistry
, edited by
M.
Dolg
(
Wiley
,
Chichester
,
2015
), Chap. 8, pp.
195
216
.
7.
F.
Weigend
, “
Error-balanced segmented contracted Gaussian basis sets. A concept and its extension to the lanthanides
,” in
Computational Methods in Lanthanide and Actinide Chemistry
, edited by
M.
Dolg
(
Wiley
,
Chichester
,
2015
), Chap. 7, pp.
181
194
.
8.
K. A.
Peterson
and
J. G.
Hill
, “
On the development of accurate Gaussian basis sets for f-block elements
,”
Annu. Rep. Comput. Chem.
14
,
47
74
(
2018
).
9.
T.
Tsuchiya
,
M.
Abe
,
T.
Nakajima
, and
K.
Hirao
, “
Accurate relativistic Gaussian basis sets for H through Lr determined by atomic self-consistent field calculations with the third-order Douglas–Kroll approximation
,”
J. Chem. Phys.
115
,
4463
4472
(
2001
).
10.
T.
Nakajima
and
K.
Hirao
, “
Accurate relativistic Gaussian basis sets determined by the third-order Douglas–Kroll approximation with a finite-nucleus model
,”
J. Chem. Phys.
116
,
8270
8275
(
2002
).
11.
B. O.
Roos
,
R.
Lindh
,
P.-Å.
Malmqvist
,
V.
Veryazov
,
P.-O.
Widmark
, and
A. C.
Borin
, “
New relativistic atomic natural orbital basis sets for lanthanide atoms with applications to the Ce diatom and LuF3
,”
J. Phys. Chem. A
112
,
11431
11435
(
2008
).
12.
D. A.
Pantazis
and
F.
Neese
, “
All-electron scalar relativistic basis sets for the lanthanides
,”
J. Chem. Theory Comput.
5
,
2229
2238
(
2009
).
13.
D.
Aravena
,
F.
Neese
, and
D. A.
Pantazis
, “
Improved segmented all-electron relativistically contracted basis sets for the lanthanides
,”
J. Chem. Theory Comput.
12
,
1148
1156
(
2016
).
14.
M.
Dolg
, “
Segmented contracted Douglas–Kroll–Hess adapted basis sets for lanthanides
,”
J. Chem. Theory Comput.
7
,
3131
3142
(
2011
).
15.
M.
Sekiya
,
T.
Noro
,
T.
Koga
, and
T.
Shimazaki
, “
Relativistic segmented contraction basis sets with core-valence correlation effects for atoms 57La through 71Lu: Sapporo-DK-nZP sets (n = D, T, Q)
,”
Theor. Chem. Acc.
131
,
1247
(
2012
).
16.
Q.
Lu
and
K. A.
Peterson
, “
Correlation consistent basis sets for lanthanides: The atoms La–Lu
,”
J. Chem. Phys.
145
,
054111
(
2016
).
17.
F. E.
Jorge
,
L. S. C.
Martins
, and
M. L.
Franco
, “
All-electron double zeta basis sets for the lanthanides: Application in atomic and molecular property calculations
,”
Chem. Phys. Lett.
643
,
84
88
(
2016
).
18.
A. Z.
de Oliveira
,
I. B.
Ferreira
,
C. T.
Campos
,
F. E.
Jorge
, and
P. A.
Fantin
, “
Segmented all-electron basis sets of triple zeta quality for the lanthanides: Application to structure calculations of lanthanide monoxides
,”
J. Mol. Model.
25
,
38
(
2019
).
19.
I. B.
Ferreira
,
C. T.
Campos
, and
F. E.
Jorge
, “
All-electron basis sets augmented with diffuse functions for He, Ca, Sr, Ba, and lanthanides: Application in calculations of atomic and molecular properties
,”
J. Mol. Model.
26
,
95
(
2020
).
20.
A. S. P.
Gomes
,
K. G.
Dyall
, and
L.
Visscher
, “
Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the lanthanides La–Lu
,”
Theor. Chem. Acc.
127
,
369
381
(
2010
).
21.
J. P.
Zobel
,
P.-O.
Widmark
, and
V.
Veryazov
, “
The ANO-R basis set
,”
J. Chem. Theory Comput.
16
,
278
294
(
2020
).
22.
P.
Pollak
and
F.
Weigend
, “
Segmented contracted error-consistent basis sets of double- and triple-ζ valence quality for one- and two-component relativistic all-electron calculations
,”
J. Chem. Theory Comput.
13
,
3696
3705
(
2017
).
23.
Y. J.
Franzke
,
L.
Spiske
,
P.
Pollak
, and
F.
Weigend
, “
Segmented contracted error-consistent basis sets of quadruple-ζ valence quality for one- and two-component relativistic all-electron calculations
,”
J. Chem. Theory Comput.
16
,
5658
5674
(
2020
).
24.
T. R.
Cundari
and
W. J.
Stevens
, “
Effective core potential methods for the lanthanides
,”
J. Chem. Phys.
98
,
5555
5565
(
1993
).
25.
R. B.
Ross
,
S.
Gayen
, and
W. C.
Ermler
, “
Ab initio relativistic effective potentials with spin–orbit operators. V. Ce through Lu
,”
J. Chem. Phys.
100
,
8145
8155
(
1994
).
26.
M.
Hülsen
,
A.
Weigand
, and
M.
Dolg
, “
Quasirelativistic energy-consistent 4f-in-core pseudopotentials for tetravalent lanthanide elements
,”
Theor. Chem. Acc.
122
,
23
29
(
2009
).
27.
M.
Hülsen
,
M.
Dolg
,
P.
Link
, and
U.
Ruschewitz
, “
Improved valence basis sets for divalent lanthanide 4f-in-core pseudopotentials
,”
Theor. Chem. Acc.
129
,
367
379
(
2011
).
28.
X.
Cao
and
M.
Dolg
, “
Valence basis sets for relativistic energy-consistent small-core lanthanide pseudopotentials
,”
J. Chem. Phys.
115
,
7348
7355
(
2001
).
29.
X.
Cao
and
M.
Dolg
, “
Segmented contraction scheme for small-core lanthanide pseudopotential basis sets
,”
J. Mol. Struct.: THEOCHEM
581
,
139
147
(
2002
).
30.
R.
Gulde
,
P.
Pollak
, and
F.
Weigend
, “
Error-balanced segmented contracted basis sets of double-ζ to quadruple-ζ valence quality for the lanthanides
,”
J. Chem. Theory Comput.
8
,
4062
4068
(
2012
).
31.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
32.
M.
Dolg
,
H.
Stoll
, and
H.
Preuss
, “
Energy adjusted ab initio pseudopotentials for the rare earth elements
,”
J. Chem. Phys.
90
,
1730
1734
(
1989
).
33.
J. G.
Hill
, “
Gaussian basis sets for molecular applications
,”
Int. J. Quantum Chem.
113
,
21
34
(
2013
).
34.
F.
Jensen
, “
Atomic orbital basis sets
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
3
,
273
295
(
2013
).
35.
B.
Nagy
and
F.
Jensen
, “
Basis sets in quantum chemistry
,” in
Reviews in Computational Chemistry
, edited by
A. L.
Parrill
and
K. B.
Lipkowitz
(
Wiley
,
Hoboken, NJ
,
2017
), Vol. 30, Chap. 3, pp.
93
149
, see https://www.wiley.com/en-us/Reviews+in+Computational+Chemistry%2C+Volume+30-p-9781119356059.
36.
A. A.
Buchachenko
,
G.
Chałasiński
, and
M. M.
Szczȩśniak
, “
Diffuse basis functions for small-core relativistic pseudopotential basis sets and static dipole polarizabilities of selected lanthanides La, Sm, Eu, Tm and Yb
,”
Struct. Chem.
18
,
769
772
(
2007
).
37.
D.
Rappoport
and
F.
Furche
, “
Property-optimized Gaussian basis sets for molecular response calculations
,”
J. Chem. Phys.
133
,
134105
(
2010
).
38.
M. R.
MacDonald
,
J. E.
Bates
,
J. W.
Ziller
,
F.
Furche
, and
W. J.
Evans
, “
Completing the series of +2 ions for the lanthanide elements: Synthesis of molecular complexes of Pr2+, Gd2+, Tb2+, and Lu2+
,”
J. Am. Chem. Soc.
135
,
9857
9868
(
2013
).
39.
M. E.
Fieser
,
M. R.
MacDonald
,
B. T.
Krull
,
J. E.
Bates
,
J. W.
Ziller
,
F.
Furche
, and
W. J.
Evans
, “
Structural, spectroscopic, and theoretical comparison of traditional vs recently discovered Ln2+ ions in the [K(2.2.2-cryptand)][(C5H4SiMe3)3Ln] complexes: The variable nature of Dy2+ and Nd2+
,”
J. Am. Chem. Soc.
137
,
369
382
(
2015
).
40.
D. H.
Woen
and
W. J.
Evans
, “
Expanding the +2 oxidation state of the rare-earth metals, uranium, and thorium in molecular complexes
,” in
Handbook on the Physics and Chemistry of Rare Earths
, edited by
J.-C. G.
Bünzli
and
V. K.
Pecharsky
(
Elsevier
,
Amsterdam
,
2016
), Vol. 50, pp.
337
394
, see https://www.sciencedirect.com/handbook/handbook-on-the-physics-and-chemistry-of-rare-earths/vol/50/suppl/C.
41.
B. P.
Pritchard
,
D.
Altarawy
,
B.
Didier
,
T. D.
Gibson
, and
T. L.
Windus
, “
New basis set exchange: An open, up-to-date resource for the molecular sciences community
,”
J. Chem. Inf. Model.
59
,
4814
4820
(
2019
).
42.
Basis Set Exchange, developed as a collaboration between the Molecular Sciences Software Institute (MolSSI) and the Pacific Northwest National Lab/Environmental Molecular Sciences Laboratory (PNNL/EMSL), https://www.basissetexchange.org.
43.
J. O.
Hirschfelder
,
W.
Byers Brown
, and
S. T.
Epstein
, “
Recent developments in perturbation theory
,” in
Advances in Quantum Chemistry
, edited by
P.-O.
Löwdin
(
Academic Press
,
New York
,
1964
), Vol. 1, pp.
255
374
.
44.
E. A.
Hylleraas
, “
Über den Grundterm der Zweielektronenprobleme von H, He, Li+, Be++ usw
,”
Z. Phys.
65
,
209
225
(
1930
).
45.
R.
Jurgens-Lutovsky
and
J.
Almlöf
, “
Dual basis sets in calculations of electron correlation
,”
Chem. Phys. Lett.
178
,
451
454
(
1991
).
46.
L.
Maschio
and
B.
Kirtman
, “
Coupled perturbation theory approach to dual basis sets for molecules and solids. 1. General theory and application to molecules
,”
J. Chem. Theory Comput.
16
,
340
353
(
2019
).
47.
D.
Rappoport
, “
Basis-set quality and basis-set bias in molecular property calculations
,”
ChemPhysChem
12
,
3404
3413
(
2011
).
48.
F.
Furche
,
B. T.
Krull
,
B. D.
Nguyen
, and
J.
Kwon
, “
Accelerating molecular property calculations with nonorthonormal Krylov space methods
,”
J. Chem. Phys.
144
,
174105
(
2016
).
49.
J.
Čížek
and
J.
Paldus
, “
Stability conditions for the solutions of the Hartree–Fock equations for atomic and molecular systems. Application to the pi-electron model of cyclic polyenes
,”
J. Chem. Phys.
47
,
3976
3985
(
1971
).
50.
D. J.
Thouless
, “
Stability conditions and nuclear rotations in the Hartree–Fock theory
,”
Nucl. Phys.
21
,
225
232
(
1960
).
51.
R.
Bauernschmitt
and
R.
Ahlrichs
, “
Stability analysis for solutions of the closed shell Kohn–Sham equation
,”
J. Chem. Phys.
104
,
9047
9052
(
1996
).
52.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
3100
(
1988
).
53.
J. P.
Perdew
, “
Density-functional approximation for the correlation energy of the inhomogeneous electron gas
,”
Phys. Rev. B
33
,
8822
8824
(
1986
).
54.
F.
Weigend
,
F.
Furche
, and
R.
Ahlrichs
, “
Gaussian basis sets of quadruple zeta valence quality for atoms H–Kr
,”
J. Chem. Phys.
119
,
12753
12762
(
2003
).
55.
A. E.
Reed
,
R. B.
Weinstock
, and
F.
Weinhold
, “
Natural population analysis
,”
J. Chem. Phys.
83
,
735
746
(
1985
).
56.
S. G.
Balasubramani
,
G. P.
Chen
,
S.
Coriani
,
M.
Diedenhofen
,
M. S.
Frank
,
Y. J.
Franzke
,
F.
Furche
,
R.
Grotjahn
,
M. E.
Harding
,
C.
Hättig
,
A.
Hellweg
,
B.
Helmich-Paris
,
C.
Holzer
,
U.
Huniar
,
M.
Kaupp
,
A. M.
Khah
,
S. K.
Khani
,
T.
Müller
,
F.
Mack
,
B. D.
Nguyen
,
S. M.
Parker
,
E.
Perlt
,
D.
Rappoport
,
K.
Reiter
,
S.
Roy
,
M.
Rückert
,
G.
Schmitz
,
M.
Sierka
,
E.
Tapavicza
,
D. P.
Tew
,
C.
van Wüllen
,
V. K.
Voora
,
F.
Weigend
,
A.
Wodyński
, and
J. M.
Yu
, “
TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations
,”
J. Chem. Phys.
152
,
184107
(
2020
).
57.
TURBOMOLE V7.5 2020, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from https://www.turbomole.org.
58.
M.
Dolg
,
H.
Stoll
, and
H.
Preuss
, “
Homonuclear diatomic lanthanoid compounds: A pseudopotential configuration interaction and correlation energy density functional study
,”
J. Mol. Struct.: THEOCHEM
277
,
239
249
(
1992
).
59.
X.
Cao
and
M.
Dolg
, “
Electronic structure of lanthanide dimers
,”
Mol. Phys.
101
,
1967
1976
(
2003
).
60.
J. R.
Lombardi
and
B.
Davis
, “
Periodic properties of force constants of small transition-metal and lanthanide clusters
,”
Chem. Rev.
102
,
2431
2460
(
2002
).
61.
J. O.
Kafader
,
J. E.
Topolski
, and
C. C.
Jarrold
, “
Molecular and electronic structures of cerium and cerium suboxide clusters
,”
J. Chem. Phys.
145
,
154306
(
2016
).
62.
B. O.
Roos
and
P.
Pyykkö
, “
Bonding trends in molecular compounds of lanthanides: The double-bonded carbene cations LnCH2+ (Ln = Sc, Y, La–Lu)
,”
Chem. Eur. J.
16
,
270
275
(
2010
).
63.
W.
Xu
,
X.
Jin
,
M.
Chen
,
P.
Pyykkö
,
M.
Zhou
, and
J.
Li
, “
Rare-earth monocarbonyls MCO: Comprehensive infrared observations and a transparent theoretical interpretation for M = Sc; Y; La–Lu
,”
Chem. Sci.
3
,
1548
1554
(
2012
).
64.
F. G. N.
Cloke
, “
Zero oxidation state compounds of scandium, yttrium, and the lanthanides
,”
Chem. Soc. Rev.
22
,
17
24
(
1993
).
65.
G. B.
Deacon
and
Q.
Shen
, “
Complexes of lanthanoids with neutral π donor ligands
,”
J. Organomet. Chem.
511
,
1
17
(
1996
).
66.
G.
Hong
,
F.
Schautz
, and
M.
Dolg
, “
Ab initio study of metal–ring bonding in the bis(η6-benzene)lanthanide and -actinide complexes M(C6H6)2 (M = La, Ce, Nd, Gd, Tb, Lu, Th, U)
,”
J. Am. Chem. Soc.
121
,
1502
1512
(
1999
).
67.
K. R.
Meihaus
,
M. E.
Fieser
,
J. F.
Corbey
,
W. J.
Evans
, and
J. R.
Long
, “
Record high single-ion magnetic moments through 4 electron configurations in the divalent lanthanide complexes [(C5H4SiMe3)3Ln]
,”
J. Am. Chem. Soc.
137
,
9855
9860
(
2015
).
68.
A. J.
Ryan
,
L. E.
Darago
,
S. G.
Balasubramani
,
G. P.
Chen
,
J. W.
Ziller
,
F.
Furche
,
J. R.
Long
, and
W. J.
Evans
, “
Synthesis, structure, and magnetism of tris(amide) [Ln{N(SiMe3)2}3]1− complexes of the non-traditional +2 lanthanide ions
,”
Chem. Eur. J.
24
,
7702
7709
(
2018
).
69.
C. A.
Gould
,
K. R.
McClain
,
J. M.
Yu
,
T. J.
Groshens
,
F.
Furche
,
B. G.
Harvey
, and
J. R.
Long
, “
Synthesis and magnetism of neutral, linear metallocene complexes of terbium(II) and dysprosium(II)
,”
J. Am. Chem. Soc.
141
,
12967
12973
(
2019
).
70.
X.
Shen
,
L.
Fang
,
X.
Chen
, and
J. R.
Lombardi
, “
Absorption, excitation, and resonance Raman spectra of Ce2, Pr2, and Nd2
,”
J. Chem. Phys.
113
,
2233
2237
(
2000
).
71.
M.
Dolg
,
H.
Stoll
, and
H.
Preuss
, “
Pseudopotential study on rare earth dihalides and trihalides
,”
J. Mol. Struct.: THEOCHEM
235
,
67
79
(
1991
).
72.
T. R.
Cundari
,
S. O.
Sommerer
,
L. A.
Strohecker
, and
L.
Tippett
, “
Effective core potential studies of lanthanide complexes
,”
J. Chem. Phys.
103
,
7058
7063
(
1995
).
73.
T.
Tsuchiya
,
T.
Taketsugu
,
H.
Nakano
, and
K.
Hirao
, “
Theoretical study of electronic and geometric structures of a series of lanthanide trihalides LnX3 (Ln = La–Lu; X = Cl, F)
,”
J. Mol. Struct.: THEOCHEM
461-462
,
203
222
(
1999
).
74.
W.
Xu
,
W.-X.
Ji
,
Y.-X.
Qiu
,
W. H. E.
Schwarz
, and
S.-G.
Wang
, “
On structure and bonding of lanthanoid trifluorides LnF3 (Ln = La to Lu)
,”
Phys. Chem. Chem. Phys.
15
,
7839
7847
(
2013
).
75.
Y.
Wang
and
M.
Dolg
, “
Pseudopotential study of the ground and excited states of Yb2
,”
Theor. Chem. Acc.
100
,
124
133
(
1998
).
76.
A. A.
Buchachenko
,
G.
Chałasiński
, and
M. M.
Szczęśniak
, “
Europium dimer: van der Waals molecule with extremely weak antiferromagnetic spin coupling
,”
J. Chem. Phys.
131
,
241102
(
2009
).
77.
P.
Schwerdtfeger
,
O. R.
Smits
, and
P.
Pyykkö
, “
The periodic table and the physics that drives it
,”
Nat. Rev. Chem.
4
,
359
380
(
2020
).
78.
M. N.
Bochkarev
, “
Molecular compounds of “new” divalent lanthanides
,”
Coord. Chem. Rev.
248
,
835
851
(
2004
).
79.
F.
Nief
, “
Molecular chemistry of the rare-earth elements in uncommon low-valent states
,” in
Handbook on the Physics and Chemistry of Rare Earths
, edited by
K. A.
Gschneidner
, Jr.
,
J.-C. G.
Bünzli
, and
V. K.
Pecharsky
(
Elsevier
,
Amsterdam
,
2010
), Vol. 40, Chap. 246, pp.
241
300
.
80.
R.
Collins
,
J. P.
Durrant
,
M.
He
, and
R. A.
Layfield
, “
Electronic structure and magnetic properties of rare-earth organometallic sandwich compounds
,” in
Handbook on the Physics and Chemistry of Rare Earths
, edited by
J.-C. G.
Bünzli
and
V. K.
Pecharsky
(
Elsevier
,
Amsterdam
,
2019
), Vol. 55, Chap. 307, pp.
89
121
.
81.
M. R.
MacDonald
,
J. E.
Bates
,
M. E.
Fieser
,
J. W.
Ziller
,
F.
Furche
, and
W. J.
Evans
, “
Expanding rare-earth oxidation state chemistry to molecular complexes of holmium(II) and erbium(II)
,”
J. Am. Chem. Soc.
134
,
8420
8423
(
2012
).
82.
V. N.
Staroverov
,
G. E.
Scuseria
,
J.
Tao
, and
J. P.
Perdew
, “
Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes
,”
J. Chem. Phys.
119
,
12129
12137
(
2003
).
83.
K.
Eichkorn
,
O.
Treutler
,
H.
Öhm
,
M.
Häser
, and
R.
Ahlrichs
, “
Auxiliary basis sets to approximate Coulomb potentials (Chem. Phys. Letters 240 (1995) 283–290)
,”
Chem. Phys. Lett.
242
,
652
660
(
1995
).
84.
F.
Weigend
, “
Accurate Coulomb-fitting basis sets for H to Rn
,”
Phys. Chem. Chem. Phys.
8
,
1057
1065
(
2006
).
85.
A.
Klamt
and
G.
Schüürmann
, “
COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient
,”
J. Chem. Soc. Perkin Trans. 2
1993
,
799
805
.
86.
P.
Deglmann
,
F.
Furche
, and
R.
Ahlrichs
, “
An efficient implementation of second analytical derivatives for density functional methods
,”
Chem. Phys. Lett.
362
,
511
518
(
2002
).
87.
P.
Deglmann
,
K.
May
,
F.
Furche
, and
R.
Ahlrichs
, “
Nuclear second analytical derivative calculations using auxiliary basis set expansions
,”
Chem. Phys. Lett.
384
,
103
107
(
2004
).
88.
R.
Bauernschmitt
and
R.
Ahlrichs
, “
Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory
,”
Chem. Phys. Lett.
256
,
454
464
(
1996
).
89.
R.
Bauernschmitt
,
M.
Häser
,
O.
Treutler
, and
R.
Ahlrichs
, “
Calculation of excitation energies within time-dependent density functional theory using auxiliary basis set expansions
,”
Chem. Phys. Lett.
264
,
573
578
(
1997
).
90.
F.
Furche
and
D.
Rappoport
, “
III. Density functional methods for excited states: Equilibrium structure and electronic spectra
,” in
Computational Photochemistry
, edited by
M.
Olivucci
(
Elsevier
,
Amsterdam
,
2005
), Vol. 16, pp.
93
128
.
91.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
, “
Rationale for mixing exact exchange with density functional approximations
,”
J. Chem. Phys.
105
,
9982
9985
(
1996
).
92.
G. H.
Diecke
,
H. M.
Crosswhite
, and
H.
Crosswhite
,
Spectra and Energy Levels of Rare Earth Ions in Crystals
(
Wiley-Interscience
,
New York
,
1968
).
93.
A. J.
Sadlej
, “
Medium-size polarized basis sets for high-level correlated calculations of molecular electric properties
,”
Coll. Czech. Chem. Commun.
53
,
1995
2016
(
1988
).
94.
C.
Thierfelder
and
P.
Schwerdtfeger
, “
Effect of relativity and electron correlation in static dipole polarizabilities of ytterbium and nobelium
,”
Phys. Rev. A
79
,
032512
(
2009
).
95.
P.
Schwerdtfeger
and
J. K.
Nagle
, “
2018 Table of static dipole polarizabilities of the neutral elements in the periodic table
,”
Mol. Phys.
117
,
1200
1225
(
2019
).
96.
T.
Wu
,
Y. N.
Kalugina
, and
A. J.
Thakkar
, “
Choosing a density functional for static molecular polarizabilities
,”
Chem. Phys. Lett.
635
,
257
261
(
2015
).
97.
V.
Dubrovin
,
A. A.
Popov
, and
S.
Avdoshenko
, “
Magnetism in Ln molecular systems with 4f/valence-shell interplay (FV-magnetism)
,”
Chem. Commun.
55
,
13963
13966
(
2019
).
98.
V. E.
Fleischauer
,
G.
Ganguly
,
D. H.
Woen
,
N. J.
Wolford
,
W. J.
Evans
,
J.
Autschbach
, and
M. L.
Neidig
, “
Insight into the electronic structure of formal lanthanide(II) complexes using magnetic circular dichroism spectroscopy
,”
Organometallics
38
,
3124
3131
(
2019
).
99.
A.
Hellweg
and
D.
Rappoport
, “
Development of new auxiliary basis functions of the Karlsruhe segmented contracted basis sets including diffuse basis functions (def2-SVPD, def2-TZVPPD, and def2-QVPPD) for RI-MP2 and RI-CC calculations
,”
Phys. Chem. Chem. Phys.
17
,
1010
1017
(
2015
).

Supplementary Material

You do not currently have access to this content.