We reveal limitations of several standard coupled-cluster (CC) methods with perturbation-theory based noniterative or approximate iterative treatments of triple excitations when applied to the determination of highly accurate potential energy curves (PECs) of ionic dimers, such as the XΣg+2 electronic ground state of Rb2+. Such computations are of current interest for the understanding of ion–atom interactions in the ultracold regime. We demonstrate that these CC methods lead to an unphysical long-range barrier for the Rb2+ system. The barrier is small but spoils the long-range behavior of the PEC. The effect is also found for other X2+ systems, such as X = Li, Na, and K. Calculations using a flexible framework for obtaining leading perturbative triples corrections derived using an analytic CC singles and doubles energy derivative formulation demonstrate that the origin of this problem lies in the use of T̂3 amplitudes obtained from approximate CC singles, doubles, and triples amplitude equations. It is shown that the unphysical barrier is related to a symmetry instability of the underlying Hartree–Fock mean-field solution, leading to orbitals representing two +0.5-fold charged ions in the limit of separated fragments. This, in turn, leads to a wrong 1/R asymptote of the interaction potential computed by perturbation-based CC approximations. Physically meaningful perturbative corrections in the long-range tail of the PEC may instead be obtained using symmetry-broken reference determinants.

1.
W.
Ketterle
,
Rev. Mod. Phys.
74
,
1131
(
2002
).
2.
M.
Schlagmüller
,
T. C.
Liebisch
,
F.
Engel
,
K. S.
Kleinbach
,
F.
Böttcher
,
U.
Hermann
,
K. M.
Westphal
,
A.
Gaj
,
R.
Löw
,
S.
Hofferberth
,
T.
Pfau
,
J.
Pérez-Ríos
, and
C. H.
Greene
,
Phys. Rev. X
6
,
031020
(
2016
).
3.
T. C.
Liebisch
,
M.
Schlagmüller
,
F.
Engel
,
H.
Nguyen
,
J.
Balewski
,
G.
Lochead
,
F.
Böttcher
,
K. M.
Westphal
,
K. S.
Kleinbach
,
T.
Schmid
,
A.
Gaj
,
R.
Löw
,
S.
Hofferberth
,
T.
Pfau
,
J.
Pérez-Ríos
, and
C. H.
Greene
,
J. Phys. B: At., Mol. Opt. Phys.
49
,
182001
(
2016
).
4.
F.
Böttcher
,
A.
Gaj
,
K. M.
Westphal
,
M.
Schlagmüller
,
K. S.
Kleinbach
,
R.
Löw
,
T. C.
Liebisch
,
T.
Pfau
, and
S.
Hofferberth
,
Phys. Rev. A
93
,
032512
(
2016
).
5.
M.
Deiß
,
B.
Drews
,
J. H.
Denschlag
,
N.
Bouloufa-Maafa
,
R.
Vexiau
, and
O.
Dulieu
,
New J. Phys.
17
,
065019
(
2015
).
6.
B.
Drews
,
M.
Deiß
,
K.
Jachymski
,
Z.
Idziaszek
, and
J.
Hecker Denschlag
,
Nat. Commun.
8
,
14854
(
2017
).
7.
B.
Drews
,
M.
Deiß
,
J.
Wolf
,
E.
Tiemann
, and
J.
Hecker Denschlag
,
Phys. Rev. A
95
,
062507
(
2017
).
8.
M.
Tomza
,
K.
Jachymski
,
R.
Gerritsma
,
A.
Negretti
,
T.
Calarco
,
Z.
Idziaszek
, and
P. S.
Julienne
,
Rev. Mod. Phys.
91
,
035001
(
2019
).
9.
R.
Côté
and
A.
Dalgarno
,
Phys. Rev. A
62
,
012709
(
2000
).
10.
Z.
Idziaszek
,
T.
Calarco
,
P. S.
Julienne
, and
A.
Simoni
,
Phys. Rev. A
79
,
010702
(
2009
).
11.
T.
Schmid
,
C.
Veit
,
N.
Zuber
,
R.
Löw
,
T.
Pfau
,
M.
Tarana
, and
M.
Tomza
,
Phys. Rev. Lett.
120
,
153401
(
2018
).
12.
K. S.
Kleinbach
,
F.
Engel
,
T.
Dieterle
,
R.
Löw
,
T.
Pfau
, and
F.
Meinert
,
Phys. Rev. Lett.
120
,
193401
(
2018
).
13.
F.
Engel
,
T.
Dieterle
,
T.
Schmid
,
C.
Tomschitz
,
C.
Veit
,
N.
Zuber
,
R.
Löw
,
T.
Pfau
, and
F.
Meinert
,
Phys. Rev. Lett.
121
,
193401
(
2018
).
14.
S. H.
Patil
and
K. T.
Tang
,
J. Chem. Phys.
106
,
2298
(
1997
).
15.
K.
Jachymski
,
M.
Krych
,
P. S.
Julienne
, and
Z.
Idziaszek
,
Phys. Rev. Lett.
110
,
213202
(
2013
).
16.
K.
Jachymski
,
M.
Krych
,
P. S.
Julienne
, and
Z.
Idziaszek
,
Phys. Rev. A
90
,
042705
(
2014
).
17.
S.
Magnier
,
S.
Rousseau
,
A. R.
Allouche
,
G.
Hadinger
, and
M.
Aubert-Frécon
,
Chem. Phys.
246
,
57
(
1999
).
18.
H.
Berriche
,
Int. J. Quantum Chem.
113
,
2405
(
2013
).
19.
S.
Magnier
and
M.
Aubert-Frécon
,
J. Quant. Spectrosc. Radiat. Transfer
78
,
217
(
2003
).
20.
A.
Jraij
,
A. R.
Allouche
,
M.
Korek
, and
M.
Aubert-Frécon
,
Chem. Phys.
290
,
129
(
2003
).
21.
M.
Musiał
,
M.
Medrek
, and
S. A.
Kucharski
,
Mol. Phys.
113
,
2943
(
2015
).
22.
A.
Bewicz
,
M.
Musiał
, and
S. A.
Kucharski
,
Mol. Phys.
115
,
2649
(
2017
).
23.
P.
Skupin
,
M.
Musiał
, and
S. A.
Kucharski
,
J. Phys. Chem. A
121
,
1480
(
2017
).
24.
S. H.
Yuwono
,
I.
Magoulas
, and
P.
Piecuch
,
Sci. Adv.
6
,
eaay4058
(
2020
).
25.
I.
Magoulas
,
N. P.
Bauman
,
J.
Shen
, and
P.
Piecuch
,
J. Phys. Chem. A
122
,
1350
(
2018
).
26.
D.
Feller
,
J. Chem. Phys.
98
,
7059
(
1993
).
27.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
28.
J. M. L.
Martin
and
G.
de Oliveira
,
J. Chem. Phys.
111
,
1843
(
1999
).
29.
A.
Tajti
,
P. G.
Szalay
,
A. G.
Császár
,
M.
Kállay
,
J.
Gauss
,
E. F.
Valeev
,
B. A.
Flowers
,
J.
Vázquez
, and
J. F.
Stanton
,
J. Chem. Phys.
121
,
11599
(
2004
).
30.
M. S.
Schuurman
,
S. R.
Muir
,
W. D.
Allen
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
120
,
11586
(
2004
).
31.
D.
Feller
,
K. A.
Peterson
, and
D. A.
Dixon
,
J. Chem. Phys.
129
,
204105
(
2008
).
32.
J. J.
Eriksen
,
D. A.
Matthews
,
P.
Jørgensen
, and
J.
Gauss
,
J. Chem. Phys.
144
,
194102
(
2016
).
33.
J. J.
Eriksen
,
D. A.
Matthews
,
P.
Jørgensen
, and
J.
Gauss
,
J. Chem. Phys.
144
,
194103
(
2016
).
34.
I. S.
Lim
,
P.
Schwerdtfeger
,
B.
Metz
, and
H.
Stoll
,
J. Chem. Phys.
122
,
104103
(
2005
).
35.
K. G.
Dyall
,
J. Chem. Phys.
115
,
9136
(
2001
).
36.
W.
Liu
and
D.
Peng
,
J. Chem. Phys.
131
,
031104
(
2009
).
37.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
38.
R. J.
Bartlett
,
J. D.
Watts
,
S. A.
Kucharski
, and
J.
Noga
,
Chem. Phys. Lett.
165
,
513
(
1990
).
39.
C.
Hampel
,
K. A.
Peterson
, and
H.-J.
Werner
,
Chem. Phys. Lett.
190
,
1
(
1992
).
40.
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
200
,
1
(
1992
).
41.
J.
Noga
and
R. J.
Bartlett
,
J. Chem. Phys.
86
,
7041
(
1987
).
42.
G. E.
Scuseria
and
H. F.
Schaefer
 III
,
Chem. Phys. Lett.
152
,
382
(
1988
).
43.
Y. J.
Bomble
,
J. F.
Stanton
,
M.
Kállay
, and
J.
Gauss
,
J. Chem. Phys.
123
,
054101
(
2005
).
44.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
123
,
214105
(
2005
).
45.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
129
,
144101
(
2008
).
46.
Y. S.
Lee
,
S. A.
Kucharski
, and
R. J.
Bartlett
,
J. Chem. Phys.
81
,
5906
(
1984
).
47.
J.
Noga
,
R. J.
Bartlett
, and
M.
Urban
,
Chem. Phys. Lett.
134
,
126
(
1987
).
48.
J. G.
Hill
and
K. A.
Peterson
,
J. Chem. Phys.
147
,
244106
(
2017
).
49.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
(
2012
).
50.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al., molpro, version 2018.2, a package of ab initio programs,
2018
, see http://www.molpro.net.
51.
P. J.
Knowles
,
C.
Hampel
, and
H. J.
Werner
,
J. Chem. Phys.
99
,
5219
(
1993
).
52.
P. J.
Knowles
,
C.
Hampel
, and
H.-J.
Werner
,
J. Chem. Phys.
112
,
3106
(
2000
).
53.
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
8718
(
1993
).
54.
J. F.
Stanton
,
Chem. Phys. Lett.
281
,
130
(
1997
).
55.
T. D.
Crawford
and
J. F.
Stanton
,
Int. J. Quantum Chem.
70
,
601
(
1998
).
56.
S. A.
Kucharski
and
R. J.
Bartlett
,
J. Chem. Phys.
108
,
5243
(
1998
).
57.
J. F.
Stanton
,
J.
Gauss
,
L.
Cheng
,
M. E.
Harding
,
D. A.
Matthews
, and
P. G.
Szalay
, CFOUR, coupled-cluster techniques for computational chemistry, a quantum-chemical program package, with contributions from
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
S.
Blaschke
,
Y. J.
Bomble
,
S.
Burger
,
O.
Christiansen
,
D.
Datta
,
F.
Engel
,
R.
Faber
,
J.
Greiner
,
M.
Heckert
,
O.
Heun
,
M.
Hilgenberg
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
T.
Kirsch
,
K.
Klein
,
G. M.
Kopper
,
W. J.
Lauderdale
,
F.
Lipparini
,
T.
Metzroth
,
L. A.
Mück
,
D. P.
O’Neill
,
T.
Nottoli
,
D. R.
Price
,
E.
Prochnow
,
C.
Puzzarini
,
K.
Ruud
,
F.
Schiffmann
,
W.
Schwalbach
,
C.
Simmons
,
S.
Stopkowicz
,
A.
Tajti
,
J.
Vázquez
,
F.
Wang
,
J. D.
Watts
and the integral packages MOLECULE (
J.
Almlöf
and
P. R.
Taylor
), PROPS (
P. R.
Taylor
), ABACUS (
T.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
), and ECP routines by
A. V.
Mitin
and
C.
van Wüllen
, for the current version, see http://www.cfour.de.
58.
D. A.
Matthews
,
L.
Cheng
,
M. E.
Harding
,
F.
Lipparini
,
S.
Stopkowicz
,
T.-C.
Jagau
,
P. G.
Szalay
,
J.
Gauss
, and
J. F.
Stanton
,
J. Chem. Phys.
152
,
214108
(
2020
).
59.
L.
Cheng
and
J.
Gauss
,
J. Chem. Phys.
135
,
084114
(
2011
).
60.
M.
Kállay
,
P. R.
Nagy
,
Z.
Rolik
,
D.
Mester
,
G. S. J.
Csontos
,
J.
Csóka
,
B. P.
Szabó
,
L.
Gyevi-Nagy
,
I.
Ladjánszki
,
L.
Szegedy
,
B.
Ladóczki
,
K.
Petrov
,
M.
Farkas
,
P. D.
Mezei
, and
B.
Hégely
, MRCC, a quantum chemical program suite,
2019
, see www.mrcc.hu.
61.
M.
Kállay
and
P. R.
Surján
,
J. Chem. Phys.
115
,
2945
(
2001
).
63.
M.
Urban
,
J.
Noga
,
S. J.
Cole
, and
R. J.
Bartlett
,
J. Chem. Phys.
83
,
4041
(
1985
).
64.
J. F.
Stanton
,
W. N.
Lipscomb
,
D. H.
Magers
, and
R. J.
Bartlett
,
J. Chem. Phys.
90
,
1077
1082
(
1989
).
65.
Y.
He
,
Z.
He
, and
D.
Cremer
,
Theor. Chem. Acc.
105
,
182
(
2001
).
66.
M.
Urban
,
I.
Černušák
,
V.
Kellö
, and
J.
Noga
, “
Electron correlation in atoms and molecules
,” in
Methods in Computational Chemistry
, edited by
S.
Wilson
(
Springer
,
New York
,
1987
), Vol. 1, p.
117
.
67.
D. A.
Fedorov
,
A.
Derevianko
, and
S. A.
Varganov
,
J. Chem. Phys.
140
,
184315
(
2014
).
68.
M.
Nooijen
and
R. J.
Bartlett
,
J. Chem. Phys.
102
,
3629
(
1995
).
69.
P.
Piecuch
and
M.
Włoch
,
J. Chem. Phys.
123
,
224105
(
2005
).
70.
P.
Piecuch
,
M.
Włoch
,
J. R.
Gour
, and
A.
Kinal
,
Chem. Phys. Lett.
418
,
467
(
2006
).
71.
M.
Włoch
,
M. D.
Lodriguito
,
P.
Piecuch
, and
J. R.
Gour
,
Mol. Phys.
104
,
2149
(
2006
).
72.
M.
Włoch
,
J. R.
Gour
, and
P.
Piecuch
,
J. Phys. Chem. A
111
,
11359
(
2007
).
73.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
, Jr.
,
J. Comput. Chem.
14
,
1347
(
1993
).
74.
G. M. J.
Barca
,
C.
Bertoni
,
L.
Carrington
,
D.
Datta
,
N.
De Silva
,
J. E.
Deustua
,
D. G.
Fedorov
,
J. R.
Gour
,
A. O.
Gunina
,
E.
Guidez
,
T.
Harville
,
S.
Irle
,
J.
Ivanic
,
K.
Kowalski
,
S. S.
Leang
,
H.
Li
,
W.
Li
,
J. J.
Lutz
,
I.
Magoulas
,
J.
Mato
,
V.
Mironov
,
H.
Nakata
,
B. Q.
Pham
,
P.
Piecuch
,
D.
Poole
,
S. R.
Pruitt
,
A. P.
Rendell
,
L. B.
Roskop
,
K.
Ruedenberg
,
T.
Sattasathuchana
,
M. W.
Schmidt
,
J.
Shen
,
L.
Slipchenko
,
M.
Sosonkina
,
V.
Sundriyal
,
A.
Tiwari
,
J. L.
Galvez Vallejo
,
B.
Westheimer
,
M.
Włoch
,
P.
Xu
,
F.
Zahariev
, and
M. S.
Gordon
,
J. Chem. Phys.
152
,
154102
(
2020
).
75.
L.
Adamowicz
,
W. D.
Laidig
, and
R. J.
Bartlett
,
Int. J. Quantum Chem.
26
,
245
(
1984
).
76.
A. C.
Scheiner
,
G. E.
Scuseria
,
J. E.
Rice
,
T. J.
Lee
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
87
,
5361
(
1987
).
77.
T.
Helgaker
and
P.
Jørgensen
,
Adv. Quant. Chem.
19
,
183
(
1988
).
78.
S.
Hirata
,
M.
Nooijen
,
I.
Grabowski
, and
R. J.
Bartlett
,
J. Chem. Phys.
114
,
3919
(
2001
).
79.
M. W.
Włoch
,
M. D.
Lodriguito
,
P.
Piecuch
, and
J. R.
Gour
,
Mol. Phys.
104
,
1
(
2006
); available at .
80.
J. J.
Eriksen
,
K.
Kristensen
,
T.
Kjærgaard
,
P.
Jørgensen
, and
J.
Gauss
,
J. Chem. Phys.
140
,
064108
(
2014
).
81.
J. J.
Eriksen
,
P.
Jørgensen
,
J.
Olsen
, and
J.
Gauss
,
J. Chem. Phys.
140
,
174114
(
2014
).
82.
J. J.
Eriksen
,
D. A.
Matthews
,
P.
Jørgensen
, and
J.
Gauss
,
J. Chem. Phys.
143
,
041101
(
2015
).
83.

Supplementary Material

You do not currently have access to this content.