This study has examined the relative energetics of nine stationary points associated with the three different radical isomers generated by removing a H atom from ethanol at the O atom (ethoxy, CH3CH2O), the α C atom (CH3CHOH), and the β C atom (CH2CH2OH). For the first time, CCSD(T) geometry optimizations and harmonic vibrational frequency computations with the cc-pVTZ and aug-cc-pVTZ basis sets have been carried out to characterize two unique minima for each isomer along with three transition state structures with Cs symmetry. Explicitly correlated CCSD(T) computations were also performed to estimate the relative energetics of these nine stationary points near the complete basis set limit. These benchmark results were used to assess the performance of various density functional theory (DFT) and wave function theory methods, and they will help guide method selection for future studies of alcohols and their radicals. The structures generated by abstracting H from the α C atom have significantly lower electronic energies (by at least 7 kcal mol−1) than the CH3CH2O and CH2CH2OH radicals. Although previously reported as a minimum on the ground-state surface, the 2A″ Cs structure of the ethoxy radical was found to be a transition state in this study with MP2, CCSD(T), and a number of DFT methods. An implicit solvation model used in conjunction with DFT and MP2 methods did not qualitatively change the relative energies of the isomers, but the results suggest that the local minima for the CH3CHOH and CH2CH2OH radicals could become more energetically competitive in condensed phase environments, such as liquid water and ethanol.

1.
E.
Albano
,
S. W.
French
, and
M.
Ingelman-Sundberg
,
Front. Biosci.
4
,
D533
D540
(
1999
).
2.
E.
Albano
,
P.
Clot
,
M.
Morimoto
,
A.
Tomasi
,
M.
Ingelman-Sundberg
, and
S. W.
French
,
Hepatology
23
,
155
163
(
1996
).
3.
E.
Albano
,
A.
Tomasi
,
L.
Goria-Gatti
, and
M. U.
Dianzani
,
Chem.-Biol. Interact.
65
,
223
234
(
1988
).
4.
L. A.
Reinke
,
Y.
Kotake
,
P. B.
McCay
, and
E. G.
Janzen
,
Free Radical Biol. Med.
11
,
31
39
(
1991
).
5.
A.
Dey
and
S. M.
Kumar
,
Cell Biol. Toxicol.
27
,
285
(
2011
).
6.
N. A.
Osna
and
T. M.
Donohue
, Jr.
,
Subcell. Biochem.
67
,
177
197
(
2013
).
7.
S.
Zakhari
,
Alcohol Res. Health
29
,
245
254
(
2006
).
8.
M. I.
Díaz Gómez
,
G. D.
Castro
,
A. M. A.
Delgado de Layo
,
M. H.
Costantini
, and
J. A.
Castro
,
Toxicology
154
,
113
122
(
2000
).
9.
D. R.
Moore
,
L. A.
Reinke
, and
P. B.
McCay
,
Mol. Pharmacol.
47
,
1224
1230
(
1995
).
10.
C. P.
Day
and
O. F. W.
James
,
Gastroenterology
114
,
842
845
(
1998
).
11.
G.
da Silva
,
J. W.
Bozzelli
,
L.
Liang
, and
J. T.
Farrell
,
J. Phys. Chem. A
113
,
8923
8933
(
2009
).
12.
E. E.
Dames
,
Int. J. Chem. Kinet.
46
,
176
188
(
2014
).
13.
H.
Feng
,
J.
Zhang
,
X.
Wang
, and
T. H.
Lee
,
Fuel
234
,
836
849
(
2018
).
14.
H.
Hashemi
,
J. M.
Christensen
, and
P.
Glarborg
,
Fuel
218
,
247
257
(
2018
).
15.
C. J.
Hayes
,
D. R.
Burgess
, and
J. A.
Manion
, “
Combustion pathways of biofuel model compounds: A review of recent research and current challenges pertaining to first-, second-, and third-generation biofuels
,” in
Advances in Physical Organic Chemistry
, edited by
I. H.
Williams
and
N. H.
Williams
(
Academic Press
,
2015
), Chap. 3, pp.
103
187
.
16.
B.
Karpichev
,
L. W.
Edwards
,
J.
Wei
, and
H.
Reisler
,
J. Phys. Chem. A
112
,
412
418
(
2008
).
17.
K.
Kohse-Höinghaus
,
P.
Oßwald
,
T. A.
Cool
,
T.
Kasper
,
N.
Hansen
,
F.
Qi
,
C. K.
Westbrook
, and
P. R.
Westmoreland
,
Angew. Chem., Int. Ed.
49
,
3572
3597
(
2010
).
18.
A.
Millán-Merino
,
E.
Fernández-Tarrazo
,
M.
Sánchez-Sanz
, and
F. A.
Williams
,
Combust. Flame
215
,
221
223
(
2020
).
19.
S. M.
Sarathy
,
P.
Oßwald
,
N.
Hansen
, and
K.
Kohse-Höinghaus
,
Prog. Energy Combust. Sci.
44
,
40
102
(
2014
).
20.
J.
Zádor
,
R. X.
Fernandes
,
Y.
Georgievskii
,
G.
Meloni
,
C. A.
Taatjes
, and
J. A.
Miller
,
Proc. Combust. Inst.
32
,
271
277
(
2009
).
21.
J.
Zádor
,
C. A.
Taatjes
, and
R. X.
Fernandes
,
Prog. Energy Combust. Sci.
37
,
371
421
(
2011
).
22.
X.
Wang
,
J.
Song
, and
Z.
Meng
,
J. Phys. Chem. A
123
,
7544
7549
(
2019
).
23.
C.
Anastasi
,
V.
Simpson
,
J.
Munk
, and
P.
Pagsberg
,
J. Phys. Chem.
94
,
6327
6331
(
1990
).
24.
P. A.
Cleary
,
M. T. B.
Romero
,
M. A.
Blitz
,
D. E.
Heard
,
M. J.
Pilling
,
P. W.
Seakins
, and
L.
Wang
,
Phys. Chem. Chem. Phys.
8
,
5633
5642
(
2006
).
25.
K.
Hoyermann
,
M.
Olzmann
,
J.
Seeba
, and
B.
Viskolcz
,
J. Phys. Chem. A
103
,
5692
5698
(
1999
).
26.
S.
Rudić
,
C.
Murray
,
D.
Ascenzi
,
H.
Anderson
,
J. N.
Harvey
, and
A. J.
Orr-Ewing
,
J. Chem. Phys.
117
,
5692
5706
(
2002
).
27.
B.
Ruscic
and
J.
Berkowitz
,
J. Chem. Phys.
101
,
10936
10946
(
1994
).
28.
J. P.
Senosiain
,
S. J.
Klippenstein
, and
J. A.
Miller
,
J. Phys. Chem. A
110
,
6960
6970
(
2006
).
29.
C. A.
Taatjes
,
N.
Hansen
,
A.
McIlroy
,
J. A.
Miller
,
J. P.
Senosiain
,
S. J.
Klippenstein
,
F.
Qi
,
L.
Sheng
,
Y.
Zhang
,
T. A.
Cool
,
J.
Wang
,
P. R.
Westmoreland
,
M. E.
Law
,
T.
Kasper
, and
K.
Kohse-Höinghaus
,
Science
308
,
1887
1889
(
2005
).
30.
Y.
Liu
,
X.
Li
,
G.
Tian
,
X.
Li
, and
Z.
Sun
,
Comput. Theor. Chem.
1032
,
84
89
(
2014
).
31.
T.
Zhang
,
M.
Wen
,
Y.
Ju
,
J.
Kang
,
R.
Wang
,
J.
Cao
, and
S. K.
Roy
,
J. Phys. Org. Chem.
32
,
e3895
(
2019
).
32.
E.
Kamarchik
,
L.
Koziol
,
H.
Reisler
,
J. M.
Bowman
, and
A. I.
Krylov
,
J. Phys. Chem. Lett.
1
,
3058
3065
(
2010
).
33.
L. A.
Curtiss
,
D. J.
Lucas
, and
J. A.
Pople
,
J. Chem. Phys.
102
,
3292
3300
(
1995
).
34.
B.
Karpichev
,
L.
Koziol
,
K.
Diri
,
H.
Reisler
, and
A. I.
Krylov
,
J. Chem. Phys.
132
,
114308
(
2010
).
35.
G.-X.
Liu
,
Y.-H.
Ding
,
Z.-S.
Li
,
Q.
Fu
,
X.-R.
Huang
,
C.-C.
Sun
, and
A.-C.
Tang
,
Phys. Chem. Chem. Phys.
4
,
1021
1027
(
2002
).
36.
Z. F.
Xu
,
K.
Xu
, and
M. C.
Lin
,
ChemPhysChem
10
,
972
982
(
2009
).
37.
R. S.
Zhu
,
J.
Park
, and
M. C.
Lin
,
Chem. Phys. Lett.
408
,
25
30
(
2005
).
38.
B. L. J.
Poad
,
A. W.
Ray
, and
R. E.
Continetti
,
J. Phys. Chem. A
117
,
12035
12041
(
2013
).
39.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
5652
(
1993
).
40.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
41.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
1465
(
2011
).
42.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
789
(
1988
).
43.
Y.
Zhao
and
D. G.
Truhlar
,
Theor. Chem. Acc.
120
,
215
241
(
2008
).
44.
D. A.
Boese
,
ChemPhysChem
16
,
978
985
(
2015
).
45.
J.-D.
Chai
and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
10
,
6615
6620
(
2008
).
46.
J.-D.
Chai
and
M.
Head-Gordon
,
J. Chem. Phys.
128
,
084106
(
2008
).
47.
S.
Grimme
,
J. Chem. Phys.
124
,
034108
(
2006
).
48.
T.
Schwabe
and
S.
Grimme
,
Phys. Chem. Chem. Phys.
9
,
3397
3406
(
2007
).
49.
S.
Kozuch
and
J. M. L.
Martin
,
Phys. Chem. Chem. Phys.
13
,
20104
20107
(
2011
).
50.
S.
Kozuch
and
J. M. L.
Martin
,
J. Comput. Chem.
34
,
2327
2344
(
2013
).
51.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. A
109
,
5656
5667
(
2005
).
52.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Phys.
125
,
194101
(
2006
).
53.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
622
(
1934
).
54.
G. D.
Purvis
 III
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
1918
(
1982
).
55.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
6806
(
1992
).
56.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
1371
(
1993
).
57.
K. A.
Peterson
,
D. E.
Woon
, and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
100
,
7410
7415
(
1994
).
58.
P. J.
Knowles
,
Chem. Phys. Lett.
155
,
513
517
(
1989
).
59.
P. J.
Knowles
and
N. C.
Handy
,
J. Chem. Phys.
88
,
6991
6998
(
1988
).
60.
C.
Sosa
and
H. B.
Schlegel
,
Int. J. Quantum Chem.
32
,
267
282
(
1987
).
61.
R.
Cammi
and
J.
Tomasi
,
J. Comput. Chem.
16
,
1449
1458
(
1995
).
62.
S.
Miertuš
,
E.
Scrocco
, and
J.
Tomasi
,
Chem. Phys.
55
,
117
129
(
1981
).
63.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16 Rev. B.01,
Wallingford, CT
,
2016
.
64.
J. G. J. F.
Stanton
,
M. E.
Harding
,
P. G.
Szalay
, CFOUR, coupled-cluster techniques for computational chemistry, with contributions from
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
Y. J.
Bomble
,
L.
Cheng
,
O.
Christiansen
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
K.
Klein
,
W. J.
Lauderdale
,
D. A.
Matthews
,
T.
Metzroth
,
L. A.
Mück
,
D. P.
O’Neill
,
D. R.
Price
,
E.
Prochnow
,
K.
Ruud
,
F.
Schiffmann
,
W.
Schwalbach
,
S.
Stopkowicz
,
A.
Tajti
,
J.
Vázquez
,
F.
Wang
,
J. D.
Watts
and the integral packages MOLECULE (
J.
Almlöf
and
P. R.
Taylor
), PROPS (
P. R.
Taylor
), ABACUS (
T.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
), and ECP routines by
A. V.
Mitin
and
C.
van Wüllen
, available at http://www.cfour.de.
65.
D. A.
Matthews
,
L.
Cheng
,
M. E.
Harding
,
F.
Lipparini
,
S.
Stopkowicz
,
T.-C.
Jagau
,
P. G.
Szalay
,
J.
Gauss
, and
J. F.
Stanton
,
J. Chem. Phys.
152
,
214108
(
2020
).
66.
H. J.
Werner
,
P. J.
Knowles
,
R. D.
Amos
,
A.
Bernhardsson
,
A.
Berning
,
P.
Celani
,
D. L.
Cooper
,
M. J. O.
Deegan
,
A. J.
Doobbyn
,
F.
Eckert
,
C.
Hampel
,
G.
Hetzer
,
T.
Korona
,
R.
Lindh
,
A. W.
Lloyd
,
S. J.
McNicholas
,
F. R.
Manby
,
W.
Meyer
,
M. E.
Mura
,
A.
Nicklass
,
P.
Palmieri
,
R.
Pitzer
,
G.
Rauhut
,
M.
Schutz
,
U.
Schumann
,
H.
Stroll
,
A. J.
Stone
,
R.
Tarroni
, and
T.
Thorsteinsson
, molpro version 2019.2, a package of ab initio programs,
2019
.
67.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
253
(
2012
).
68.
P. R.
Tentscher
and
J. S.
Arey
,
J. Chem. Theory Comput.
8
,
2165
2179
(
2012
).

Supplementary Material

You do not currently have access to this content.