This work addresses the pathological behavior of the energetics of dimethyl sulfoxide and related sulfur-containing compounds by providing the computational benchmark energetics of R2E2 species, where R = H/CH3 and E = O/S, with bent and pyramidal geometries using state-of-the-art methodologies. These 22 geometries were fully characterized with coupled-cluster with single, double, and perturbative triple excitations [CCSD(T)], second-order Møller–Plesset perturbation theory (MP2), and 22 density functional theory (DFT) methods with 8, 12, and 12, respectively, correlation consistent basis sets of double-, triple-, or quadruple-ζ quality. The relative energetics were determined at the MP2 and CCSD(T) complete basis set (CBS) limits using 17 basis sets up to sextuple-ζ and include augmented, tight-d, and core–valence correlation consistent basis sets. The relative energies of oxygen-/sulfur-containing compounds exhibit exceptionally slow convergence to the CBS limit with canonical methods as well as significant basis set dependence. CCSD(T) with quadruple-ζ basis sets can give qualitatively incorrect relative energies. Explicitly correlated MP2-F12 and CCSD(T)-F12 methods dramatically accelerate the convergence of the relative energies to the CBS limit for these problematic compounds. The F12 methods with a triple-ζ quality basis set give relative energies that deviate no more than 0.41 kcal mol−1 from the benchmark CBS limit. The correlation consistent Composite Approach (ccCA), ccCA-TM (TM for transition metals), and G3B3 deviated by no more than 2 kcal mol−1 from the benchmark CBS limits. Relative energies for oxygen-/sulfur-containing systems fully characterized with DFT are quite unreliable even with triple-ζ quality basis sets, and 13 out of 45 combinations fortuitously give a relative energy that is within 1 kcal mol−1 on average from the benchmark CCSD(T) CBS limit for these systems.

1.
S.
Wolfe
and
H. B.
Schlegel
, “
On the constitution of dimethyl sulfoxide
,”
Gazz. Chim. Ital.
120
,
285
(
1990
).
2.
D. D.
Gregory
and
W. S.
Jenks
, “
Thermochemistry of sulfenic esters (RSOR′): Not just another pretty peroxide
,”
J. Org. Chem.
63
,
3859
(
1998
).
3.
F.
Turěek
, “
Proton affinity of dimethyl sulfoxide and relative stabilities of C2H6OS molecules and C2H7OS+ ions. A comparative G2(MP2) ab initio and density functional theory study
,”
J. Phys. Chem. A
102
,
4703
(
1998
).
4.
D. D.
Gregory
and
W. S.
Jenks
, “
Computational investigation of vicinal disulfoxides and other sulfinyl radical dimers
,”
J. Phys. Chem. A
107
,
3414
(
2003
).
5.
M.
Chen
,
R.
Yang
,
R.
Ma
, and
M.
Zhou
, “
Infrared spectra of the sulfenic ester CH3SOCH3 and its photodissociation products in solid argon
,”
J. Phys. Chem. A
112
,
7157
(
2008
).
6.
P.
Denis
, “
Theoretical characterization of the HSOH, H2SO and H2OS isomers
,”
Mol. Phys.
106
,
2557
(
2008
).
7.
H.
Wallmeier
and
W.
Kutzelnigg
, “
Nature of the semipolar XO bond. Comparative ab initio study of H3NO, H2NOH, H3PO, H2POH, H2P(O)F, H2SO, HSOH, HClO, ArO, and related molecules
,”
J. Am. Chem. Soc.
101
,
2804
(
1979
).
8.
M.
Solà
,
C.
Gonzalez
,
G.
Tonachini
, and
H. B.
Schlegel
, “
Gradient optimization of polarization exponents in ab initio MO calculations on H2SO → HSOH and CH3SH → CH2SH2
,”
Theor. Chim. Acta
77
,
281
(
1990
).
9.
R. A. J.
O’Hair
,
C. H.
DePuy
, and
V. M.
Bierbaum
, “
Gas-phase chemistry and thermochemistry of the hydroxysulfide anion, HOS-
,”
J. Phys. Chem.
97
,
7955
(
1993
).
10.
A.
Goumri
,
J.-D. R.
Rocha
,
D.
Laakso
,
C. E.
Smith
, and
P.
Marshall
, “
Computational studies of the potential energy surface for O(1D) + H2S: Characterization of pathways involving H2SO, HOSH, and H2OS
,”
J. Chem. Phys.
101
,
9405
(
1994
).
11.
C.
Wen-kai
,
Y.
Ying-chun
,
L.
Jun-Qian
,
Y.
Zhi-Xiang
, and
Y.
Huai-Jin
, “
A theoretical study on the equilibrium structures and relative stabilities of H2SO
,”
Chin. J. Struct. Chem.
24
,
104
(
2005
).
12.
P.
Denis
, “
Thermochemistry of 35 selected sulfur compounds, a comparison between experiment and theory
,”
J. Sulfur Chem.
29
,
327
(
2008
).
13.
B. A.
Lindquist
and
T. H.
Dunning
, “
The nature of the SO bond of chlorinated sulfur–oxygen compounds
,”
Theor. Chem. Acc.
133
,
1443
(
2014
).
14.
I.
Alkorta
and
J.
Elguero
, “
Classical versus redox tautomerism: Substituent effects on the keto/enol and sulfoxide/sulfenic acid equilibria
,”
Tetrahedron Lett.
45
,
4127
(
2004
).
15.
J.
Amaudrut
,
D. J.
Pasto
, and
O.
Wiest
, “
Theoretical studies of the sulfenate–sulfoxide rearrangement
,”
J. Org. Chem.
63
,
6061
(
1998
).
16.
A.
Hinchliffe
, “
Structure and properties of HSSH, H2SS, FSSF and F2SS
,”
J. Mol. Struct.
55
,
127
(
1979
).
17.
R. S.
Laitinen
,
T. A.
Pakkanen
, and
R.
Steudel
, “
Ab initio study of hypervalent sulfur hydrides as model intermediates in the interconversion reactions of compounds containing sulfur-sulfur bonds
,”
J. Am. Chem. Soc.
109
,
710
(
1987
).
18.
R.
Steudel
,
Y.
Drozdova
,
K.
Miaskiewicz
,
R. H.
Hertwig
, and
W.
Koch
, “
How unstable are thiosulfoxides? An ab initio MO study of various disulfanes RSSR (R = H, Me, Pr, all), their branched isomers R2SS, and the related transition states1,2
,”
J. Am. Chem. Soc.
119
,
1990
(
1997
).
19.
G.
Sánchez-Sanz
,
I.
Alkorta
, and
J.
Elguero
, “
Theoretical study of the HXYH dimers (X, Y = O, S, Se). Hydrogen bonding and chalcogen–chalcogen interactions
,”
Mol. Phys.
109
,
2543
(
2011
).
20.
P.
Gerbaux
,
J.-Y.
Salpin
,
G.
Bouchoux
, and
R.
Flammang
, “
Thiosulfoxides (X2S = S) and disulfanes (XSSX): First observation of organic thiosulfoxides
,”
Int. J. Mass Spectrom.
195-196
,
239
(
2000
).
21.
J. I.
Toohey
and
A. J. L.
Cooper
, “
Thiosulfoxide (sulfane) sulfur: New chemistry and new regulatory roles in biology
,”
Molecules
19
,
12789
(
2014
).
22.
M. R.
Kumar
and
P. J.
Farmer
, “
Trapping reactions of the sulfenyl and sulfinyl tautomers of sulfenic acids
,”
ACS Chem. Biol.
12
,
474
(
2017
).
23.
C.-T.
Yang
,
N. O.
Devarie-Baez
,
A.
Hamsath
,
X.-D.
Fu
, and
M.
Xian
, “
S-persulfidation: Chemistry, chemical biology, and significance in health and disease
,”
Antioxid. Redox Signaling
33
,
1092
(
2020
).
24.
F.
Freeman
,
A.
Bui
,
L.
Dinh
, and
W. J.
Hehre
, “
Dehydrative cyclocondensation mechanisms of hydrogen thioperoxide and of alkanesulfenic acids
,”
J. Phys. Chem. A
116
,
8031
(
2012
).
25.
F.
Freeman
, “
Mechanisms of reactions of sulfur hydride hydroxide: Tautomerism, condensations, and C-sulfenylation and O-sulfenylation of 2,4-pentanedione
,”
J. Phys. Chem. A
119
,
3500
(
2015
).
26.
M.
El-Hamdi
,
J.
Poater
,
F. M.
Bickelhaupt
, and
M.
Solà
, “
X2Y2 isomers: Tuning structure and relative stability through electronegativity differences (X = H, Li, Na, F, Cl, Br, I; Y = O, S, Se, Te)
,”
Inorg. Chem.
52
,
2458
(
2013
).
27.
T.
Shikata
and
N.
Sugimoto
, “
Dimeric molecular association of dimethyl sulfoxide in solutions of nonpolar liquids
,”
J. Phys. Chem. A
116
,
990
(
2012
).
28.
N. S.
Venkataramanan
and
A.
Suvitha
, “
Nature of bonding and cooperativity in linear DMSO clusters: A DFT, AIM and NCI analysis
,”
J. Mol. Graphics Modell.
81
,
50
(
2018
).
29.
M. D.
Esrafili
and
F.
Mohammadian-Sabet
, “
An ab initio study on chalcogen–chalcogen bond interactions in cyclic (SHX)3 complexes (X = F, Cl, CN, NC, CCH, OH, OCH3, NH2)
,”
Chem. Phys. Lett.
628
,
71
(
2015
).
30.
E. A.
Orabi
and
G. H.
Peslherbe
, “
Computational insight into hydrogen persulfide and a new additive model for chemical and biological simulations
,”
Phys. Chem. Chem. Phys.
21
,
15988
(
2019
).
31.
Q.
Feng
,
H.
Wang
,
S.
Zhang
, and
J.
Wang
, “
Aggregation behavior of 1-dodecyl-3-methylimidazolium bromide ionic liquid in non-aqueous solvents
,”
Colloids Surf., A
367
,
7
(
2010
).
32.
H. K.
Stassen
,
R.
Ludwig
,
A.
Wulf
, and
J.
Dupont
, “
Imidazolium salt ion pairs in solution
,”
Chem. - A Eur. J.
21
,
8324
(
2015
).
33.
Y.-Z.
Zheng
,
Z.-R.
Shen
,
Y.
Zhou
,
R.
Guo
, and
D.-F.
Chen
, “
A combination of FTIR and DFT methods to study the structure and interaction properties of TSILs and DMSO mixtures
,”
J. Chem. Thermodyn.
131
,
441
(
2019
).
34.
Y.
Zhou
,
S.
Gong
,
X.
Xu
,
Z.
Yu
,
J.
Kiefer
, and
Z.
Wang
, “
The interactions between polar solvents (methanol, acetonitrile, dimethylsulfoxide) and the ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide
,”
J. Mol. Liq.
299
,
112159
(
2020
).
35.
T. B.
Adler
,
G.
Knizia
, and
H.-J.
Werner
, “
A simple and efficient CCSD(T)-F12 approximation
,”
J. Chem. Phys.
127
,
221106
(
2007
).
36.
H.-J.
Werner
,
G.
Knizia
,
T. B.
Adler
, and
O.
Marchetti
, “
Benchmark studies for explicitly correlated perturbation- and coupled cluster theories
,”
Z. Phys. Chem.
224
,
493
(
2010
).
37.
H.-J.
Werner
,
G.
Knizia
, and
F. R.
Manby
, “
Explicitly correlated coupled cluster methods with pair-specific geminals
,”
Mol. Phys.
109
,
407
(
2011
).
38.
A. J.
May
and
F. R.
Manby
, “
An explicitly correlated second order Møller–Plesset theory using a frozen Gaussian geminal
,”
J. Chem. Phys.
121
,
4479
(
2004
).
39.
A. K.
Wilson
and
T. H.
Dunning
, “
The HSO–SOH isomers revisited: The effect of tight d functions
,”
J. Phys. Chem. A
108
,
3129
(
2004
).
40.
A. K.
Wilson
and
T. H.
Dunning
, “
SO2 revisited: Impact of tight d augmented correlation consistent basis sets on structure and energetics
,”
J. Chem. Phys.
119
,
11712
(
2003
).
41.
G. E.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
 et al., Gaussian 09,
2009
.
42.
A.
Austin
,
G. A.
Petersson
,
M. J.
Frisch
,
F. J.
Dobek
,
G.
Scalmani
, and
K.
Throssell
, “
A density functional with spherical atom dispersion terms
,”
J. Chem. Theory Comput.
8
,
4989
(
2012
).
43.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
(
1988
).
44.
A. D.
Becke
, “
Density‐functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
(
1993
).
45.
J. P.
Perdew
, “
Density-functional approximation for the correlation energy of the inhomogeneous electron gas
,”
Phys. Rev. B
33
,
8822
(
1986
).
46.
J. P.
Perdew
and
Y.
Wang
, “
Accurate and simple analytic representation of the electron-gas correlation energy
,”
Phys. Rev. B
45
,
13244
(
1992
).
47.
S.
Grimme
, “
Semiempirical GGA-type density functional constructed with a long-range dispersion correction
,”
J. Comput. Chem.
27
,
1787
(
2006
).
48.
Y.
Zhao
,
N. E.
Schultz
, and
D. G.
Truhlar
, “
Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions
,”
J. Chem. Phys.
123
,
161103
(
2005
).
49.
Y.
Zhao
and
D. G.
Truhlar
, “
Density functionals with broad applicability in chemistry
,”
Acc. Chem. Res.
41
,
157
(
2008
).
50.
Y.
Zhao
,
N. E.
Schultz
, and
D. G.
Truhlar
, “
Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions
,”
J. Chem. Theory Comput.
2
,
364
(
2006
).
51.
Y.
Zhao
and
D. G.
Truhlar
, “
The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other function
,”
Theor. Chem. Acc.
120
,
215
(
2008
).
52.
Y.
Zhao
and
D. G.
Truhlar
, “
Density functional for spectroscopy: No long-range self-interaction error, good performance for Rydberg and charge-transfer states, and better performance on average than B3LYP for ground states
,”
J. Phys. Chem. A
110
,
13126
(
2006
).
53.
R.
Peverati
and
D. G.
Truhlar
, “
Improving the accuracy of hybrid meta-GGA density functionals by range separation
,”
J. Phys. Chem. Lett.
2
,
2810
(
2011
).
54.
R.
Peverati
and
D. G.
Truhlar
, “
Screened-exchange density functionals with broad accuracy for chemistry and solid-state physics
,”
Phys. Chem. Chem. Phys.
14
,
16187
(
2012
).
55.
C.
Adamo
and
V.
Barone
, “
Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models
,”
J. Chem. Phys.
108
,
664
(
1998
).
56.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
(
1999
).
57.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
58.
S.
Kurth
,
J. P.
Perdew
, and
P.
Blaha
, “
Molecular and solid-state tests of density functional approximations: LSD, GGAs, and meta-GGAs
,”
Int. J. Quantum Chem.
75
,
889
(
1999
).
59.
V. N.
Staroverov
,
G. E.
Scuseria
,
J.
Tao
, and
J. P.
Perdew
, “
Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes
,”
J. Chem. Phys.
119
,
12129
(
2003
).
60.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
, “
Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and solids
,”
Phys. Rev. Lett.
91
,
146401
(
2003
).
61.
J.-D.
Chai
and
M.
Head-Gordon
, “
Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections
,”
Phys. Chem. Chem. Phys.
10
,
6615
(
2008
).
62.
C.
Møller
and
M. S.
Plesset
, “
Note on an approximation treatment for many-electron systems
,”
Phys. Rev.
46
,
618
(
1934
).
63.
M.
Head-Gordon
,
J. A.
Pople
, and
M. J.
Frisch
, “
MP2 energy evaluation by direct methods
,”
Chem. Phys. Lett.
153
,
503
(
1988
).
64.
S.
Sæbø
and
J.
Almlöf
, “
Avoiding the integral storage bottleneck in LCAO calculations of electron correlation
,”
Chem. Phys. Lett.
154
,
83
(
1989
).
65.
M. J.
Frisch
,
M.
Head-Gordon
, and
J. A.
Pople
, “
A direct MP2 gradient method
,”
Chem. Phys. Lett.
166
,
275
(
1990
).
66.
M. J.
Frisch
,
M.
Head-Gordon
, and
J. A.
Pople
, “
Semi-direct algorithms for the MP2 energy and gradient
,”
Chem. Phys. Lett.
166
,
281
(
1990
).
67.
M.
Head-Gordon
and
T.
Head-Gordon
, “
Analytic MP2 frequencies without fifth-order storage. Theory and application to bifurcated hydrogen bonds in the water hexamer
,”
Chem. Phys. Lett.
220
,
122
(
1994
).
68.
R. J.
Bartlett
, “
Many-body perturbation theory and coupled cluster theory for electron correlation in molecules
,”
Annu. Rev. Phys. Chem.
32
,
359
(
1981
).
69.
G. D.
Purvis
and
R. J.
Bartlett
, “
A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples
,”
J. Chem. Phys.
76
,
1910
(
1982
).
70.
J. F.
Stanton
,
J.
Gauss
,
L.
Cheng
,
M. E.
Harding
,
D. A.
Matthews
, and
P. G.
Szalay
, “
CFOUR: Coupled-cluster techniques for computational chemistry, a quantum-chemical program package
.” For the current version, see http://www.cfour.de.
71.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
(
1989
).
72.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
, “
Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
(
1992
).
73.
D. E.
Woon
and
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon
,”
J. Chem. Phys.
98
,
1358
(
1993
).
74.
T. H.
Dunning
,
K. A.
Peterson
, and
A. K.
Wilson
, “
Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited
,”
J. Chem. Phys.
114
,
9244
(
2001
).
75.
D. E.
Woon
and
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. V. Core‐valence basis sets for boron through neon
,”
J. Chem. Phys.
103
,
4572
(
1995
).
76.
H.-J.
Werner
,
T. B.
Adler
, and
F. R.
Manby
, “
General orbital invariant MP2-F12 theory
,”
J. Chem. Phys.
126
,
164102
(
2007
).
77.
K. A.
Peterson
,
T. B.
Adler
, and
H.-J.
Werner
, “
Systematically convergent basis sets for explicitly correlated wavefunctions: The atoms H, He, B–Ne, and Al–Ar
,”
J. Chem. Phys.
128
,
084102
(
2008
).
78.
H. J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
 et al., MOLPRO, version 2012.1, a package of ab initio programs,
2012
.
79.
H. J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
 et al., MOLPRO, version 2015.1, a package of ab initio programs,
2015
.
80.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16, Revision C.01,
2016
.
81.
D. G. A.
Smith
,
L. A.
Burns
,
A. C.
Simmonett
,
R. M.
Parrish
,
M. C.
Schieber
,
R.
Galvelis
,
P.
Kraus
,
H.
Kruse
,
R.
Di Remigio
,
A.
Alenaizan
,
A. M.
James
,
S.
Lehtola
,
J. P.
Misiewicz
,
M.
Scheurer
,
R. A.
Shaw
,
J. B.
Schriber
,
Y.
Xie
,
Z. L.
Glick
,
D. A.
Sirianni
,
J. S.
O’Brien
,
J. M.
Waldrop
,
A.
Kumar
,
E. G.
Hohenstein
,
B. P.
Pritchard
,
B. R.
Brooks
,
H. F.
Schaefer
,
A. Y.
Sokolov
,
K.
Patkowski
,
A. E.
DePrince
,
U.
Bozkaya
,
R. A.
King
,
F. A.
Evangelista
,
J. M.
Turney
,
T. D.
Crawford
, and
C. D.
Sherrill
, “
PSI4 1.4: Open-source software for high-throughput quantum chemistry
,”
J. Chem. Phys.
152
,
184108
(
2020
).
82.
D.
Feller
, “
The use of systematic sequences of wave functions for estimating the complete basis set, full configuration interaction limit in water
,”
J. Chem. Phys.
98
,
7059
(
1993
).
83.
E. V.
Dornshuld
and
G. S.
Tschumper
, “
Characterization of the potential energy surfaces of two small but challenging noncovalent dimers: (P2)2 and (PCCP)2
,”
J. Comput. Chem.
35
,
479
(
2014
).
84.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
, “
Basis-set convergence of correlated calculations on water
,”
J. Chem. Phys.
106
,
9639
(
1997
).
85.
D.
Rappoport
and
F.
Furche
, “
Property-optimized Gaussian basis sets for molecular response calculations
,”
J. Chem. Phys.
133
,
134105
(
2010
).
86.
F.
Jensen
, “
Polarization consistent basis sets: Principles
,”
J. Chem. Phys.
115
,
9113
(
2001
).
87.
F.
Jensen
, “
Polarization consistent basis sets. II. Estimating the Kohn–Sham basis set limit
,”
J. Chem. Phys.
116
,
7372
(
2002
).
88.
F.
Jensen
, “
Polarization consistent basis sets. III. The importance of diffuse functions
,”
J. Chem. Phys.
117
,
9234
(
2002
).
89.
A. D.
McLean
and
G. S.
Chandler
, “
Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18
,”
J. Chem. Phys.
72
,
5639
(
1980
).
90.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
, “
Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions
,”
J. Chem. Phys.
72
,
650
(
1980
).
91.
M. J.
Frisch
,
J. A.
Pople
, and
J. S.
Binkley
, “
Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets
,”
J. Chem. Phys.
80
,
3265
(
1984
).
92.
T.
Clark
,
J.
Chandrasekhar
,
G. W.
Spitznagel
, and
P. V. R.
Schleyer
, “
Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li–F
,”
J. Comput. Chem.
4
,
294
(
1983
).
93.
R.
Ditchfield
,
W. J.
Hehre
, and
J. A.
Pople
, “
Self‐consistent molecular‐orbital methods. IX. An extended Gaussian‐type basis for molecular‐orbital studies of organic molecules
,”
J. Chem. Phys.
54
,
724
(
1971
).
94.
N. J.
DeYonker
,
T. R.
Cundari
, and
A. K.
Wilson
, “
The correlation consistent composite approach (ccCA): An alternative to the Gaussian-n methods
,”
J. Chem. Phys.
124
,
114104
(
2006
).
95.
N. J.
DeYonker
,
T.
Grimes
,
S.
Yockel
,
A.
Dinescu
,
B.
Mintz
,
T. R.
Cundari
, and
A. K.
Wilson
, “
The correlation-consistent composite approach: Application to the G3/99 test set
,”
J. Chem. Phys.
125
,
104111
(
2006
).
96.
C. C. J.
Roothaan
, “
New developments in molecular orbital theory
,”
Rev. Mod. Phys.
23
,
69
(
1951
).
97.
A. K.
Wilson
,
D. E.
Woon
,
K. A.
Peterson
, and
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton
,”
J. Chem. Phys.
110
,
7667
(
1999
).
98.
N. J.
DeYonker
,
T. G.
Williams
,
A. E.
Imel
,
T. R.
Cundari
, and
A. K.
Wilson
, “
Accurate thermochemistry for transition metal complexes from first-principles calculations
,”
J. Chem. Phys.
131
,
024106
(
2009
).
99.
N. J.
DeYonker
,
K. A.
Peterson
,
G.
Steyl
,
A. K.
Wilson
, and
T. R.
Cundari
, “
Quantitative computational thermochemistry of transition metal species
,”
J. Phys. Chem. A
111
,
11269
(
2007
).
100.
N. B.
Balabanov
and
K. A.
Peterson
, “
Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc–Zn
,”
J. Chem. Phys.
123
,
064107
(
2005
).
101.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
, and
J.
Olsen
, “
Basis-set convergence of the energy in molecular Hartree–Fock calculations
,”
Chem. Phys. Lett.
302
,
437
(
1999
).
102.
T. G.
Williams
,
N. J.
DeYonker
, and
A. K.
Wilson
, “
Hartree-Fock complete basis set limit properties for transition metal diatomics
,”
J. Chem. Phys.
128
,
044101
(
2008
).
103.
A. G.
Baboul
,
L. A.
Curtiss
,
P. C.
Redfern
, and
K.
Raghavachari
, “
Gaussian-3 theory using density functional geometries and zero-point energies
,”
J. Chem. Phys.
110
,
7650
(
1999
).
104.
J. A.
Pople
,
M.
Head‐Gordon
, and
K.
Raghavachari
, “
Quadratic configuration interaction. A general technique for determining electron correlation energies
,”
J. Chem. Phys.
87
,
5968
(
1987
).
105.
P. C.
Hariharan
and
J. A.
Pople
, “
The influence of polarization functions on molecular orbital hydrogenation energies
,”
Theor. Chim. Acta
28
,
213
(
1973
).
106.
M. M.
Francl
,
W. J.
Pietro
,
W. J.
Hehre
,
J. S.
Binkley
,
M. S.
Gordon
,
D. J.
DeFrees
, and
J. A.
Pople
, “
Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements
,”
J. Chem. Phys.
77
,
3654
(
1982
).
107.
R.
Krishnan
and
J. A.
Pople
, “
Approximate fourth-order perturbation theory of the electron correlation energy
,”
Int. J. Quantum Chem.
14
,
91
(
1978
).
108.
R.
Krishnan
,
M. J.
Frisch
, and
J. A.
Pople
, “
Contribution of triple substitutions to the electron correlation energy in fourth order perturbation theory
,”
J. Chem. Phys.
72
,
4244
(
1980
).
109.

“The G3large basis set can be downloaded from the website http://chemistry.anl.gov/compmat/g3theory.htm. The G3 total energies of the molecules in the G2/97 test set are also available from this website.

110.

“The 6-31G(d), 6-311G(d), and 6-31G(2d f,p) basis sets use six Cartesian d-functions (6d), while the G3large basis set uses five “pure” d-functions (5d) as in 6-311G(d). Both the 6-31G(2d f,p) and G3large basis sets use a “pure” 7 f set.”

111.
T. J.
Lee
and
P. R.
Taylor
, “
A diagnostic for determining the quality of single-reference electron correlation methods
,”
Int. J. Quantum Chem.
36
,
199
(
1989
).
112.
C. L.
Janssen
and
I. M. B.
Nielsen
, “
New diagnostics for coupled-cluster and Møller–Plesset perturbation theory
,”
Chem. Phys. Lett.
290
,
423
(
1998
).
113.
T. J.
Lee
, “
Comparison of the T1 and D1 diagnostics for electronic structure theory: A new definition for the open-shell D1 diagnostic
,”
Chem. Phys. Lett.
372
,
362
(
2003
).
114.
D.
Feller
and
K. A.
Peterson
, “
An expanded calibration study of the explicitly correlated CCSD(T)-F12b method using large basis set standard CCSD(T) atomization energies
,”
J. Chem. Phys.
139
,
084110
(
2013
).

Supplementary Material

You do not currently have access to this content.