Efficient implementations of the symmetric and asymmetric triple excitation corrections for the orbital-optimized coupled-cluster doubles (OCCD) method with the density-fitting approach, denoted by DF-OCCD(T) and DF-OCCD(T)Λ, are presented. The computational cost of the DF-OCCD(T) method is compared with that of the conventional OCCD(T). In the conventional OCCD(T) and OCCD(T)Λ methods, one needs to perform four-index integral transformations at each coupled-cluster doubles iterations, which limits its applications to large chemical systems. Our results demonstrate that DF-OCCD(T) provides dramatically lower computational costs compared to OCCD(T), and there are more than 68-fold reductions in the computational time for the C5H12 molecule with the cc-pVTZ basis set. Our results show that the DF-OCCD(T) and DF-OCCD(T)Λ methods are very helpful for the study of single bond-breaking problems. Performances of the DF-OCCD(T) and DF-OCCD(T)Λ methods are noticeably better than that of the coupled-cluster singles and doubles with perturbative triples [CCSD(T)] method for the potential energy surfaces of the molecules considered. Specifically, the DF-OCCD(T)Λ method provides dramatic improvements upon CCSD(T), and there are 8–14-fold reductions in nonparallelity errors. Overall, we conclude that the DF-OCCD(T)Λ method is very promising for the study of challenging chemical systems, where the CCSD(T) fails.

1.
G. E.
Scuseria
and
H. F.
Schaefer
,
Chem. Phys. Lett.
142
,
354
(
1987
).
2.
C. D.
Sherrill
,
A. I.
Krylov
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
4171
(
1998
).
3.
A. I.
Krylov
,
C. D.
Sherrill
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
10669
(
1998
).
4.
T. B.
Pedersen
,
H.
Koch
, and
C.
Hättig
,
J. Chem. Phys.
110
,
8318
(
1999
).
5.
A. I.
Krylov
,
C. D.
Sherrill
, and
M.
Head-Gordon
,
J. Chem. Phys.
113
,
6509
(
2000
).
6.
S. R.
Gwaltney
,
C. D.
Sherrill
,
M.
Head-Gordon
, and
A. I.
Krylov
,
J. Chem. Phys.
113
,
3548
(
2000
).
7.
T. B.
Pedersen
,
B.
Fernández
, and
H.
Koch
,
J. Chem. Phys.
114
,
6983
(
2001
).
8.
A.
Köhn
and
J.
Olsen
,
J. Chem. Phys.
122
,
084116
(
2005
).
9.
R. C.
Lochan
and
M.
Head-Gordon
,
J. Chem. Phys.
126
,
164101
(
2007
).
10.
F.
Neese
,
T.
Schwabe
,
S.
Kossmann
,
B.
Schirmer
, and
S.
Grimme
,
J. Chem. Theory Comput.
5
,
3060
(
2009
).
11.
W.
Kurlancheek
and
M.
Head-Gordon
,
Mol. Phys.
107
,
1223
(
2009
).
12.
S.
Kossmann
and
F.
Neese
,
J. Phys. Chem. A
114
,
11768
(
2010
).
13.
U.
Bozkaya
,
J. M.
Turney
,
Y.
Yamaguchi
,
H. F.
Schaefer
, and
C. D.
Sherrill
,
J. Chem. Phys.
135
,
104103
(
2011
).
14.
U.
Bozkaya
,
J. Chem. Phys.
135
,
224103
(
2011
).
15.
U.
Bozkaya
and
H. F.
Schaefer
,
J. Chem. Phys.
136
,
204114
(
2012
).
16.
W.
Kurlancheek
,
R.
Lochan
,
K.
Lawler
, and
M.
Head-Gordon
,
J. Chem. Phys.
136
,
054113
(
2012
).
17.
U.
Bozkaya
and
C. D.
Sherrill
,
J. Chem. Phys.
138
,
184103
(
2013
).
18.
U.
Bozkaya
and
C. D.
Sherrill
,
J. Chem. Phys.
139
,
054104
(
2013
).
19.
U.
Bozkaya
,
J. Chem. Phys.
139
,
104116
(
2013
).
20.
A. Y.
Sokolov
and
H. F.
Schaefer
,
J. Chem. Phys.
139
,
204110
(
2013
).
21.
U.
Bozkaya
,
J. Chem. Theory Comput.
10
,
2371
(
2014
).
22.
U.
Bozkaya
,
J. Chem. Theory Comput.
10
,
4389
(
2014
).
23.
U.
Bozkaya
and
C. D.
Sherrill
,
J. Chem. Phys.
141
,
204105
(
2014
).
24.
J.
Lee
and
M.
Head-Gordon
,
J. Chem. Theory Comput.
14
,
5203
(
2018
).
25.
J.
Lee
and
M.
Head-Gordon
,
J. Chem. Phys.
150
,
244106
(
2019
).
26.
L. W.
Bertels
,
J.
Lee
, and
M.
Head-Gordon
,
J. Phys. Chem. Lett.
10
,
4170
(
2019
).
27.
U.
Bozkaya
,
A.
Ünal
, and
Y.
Alagöz
,
J. Chem. Phys.
153
,
244115
(
2020
).
28.
C.
Kollmar
and
A.
Heßelmann
,
Theor. Chem. Acc.
127
,
311
(
2010
).
29.
C.
Kollmar
and
F.
Neese
,
J. Chem. Phys.
135
,
084102
(
2011
).
30.
U.
Bozkaya
,
Phys. Chem. Chem. Phys.
18
,
11362
(
2016
).
31.
U.
Bozkaya
,
J. Chem. Theory Comput.
12
,
1179
(
2016
).
32.
U.
Bozkaya
,
J. Comput. Chem.
39
,
351
(
2018
).
33.
J. B.
Robinson
and
P. J.
Knowles
,
J. Chem. Phys.
135
,
044113
(
2011
).
34.
J. B.
Robinson
and
P. J.
Knowles
,
J. Chem. Phys.
136
,
054114
(
2012
).
35.
J. B.
Robinson
and
P. J.
Knowles
,
J. Chem. Phys.
138
,
074104
(
2013
).
36.
E.
Soydaş
and
U.
Bozkaya
,
J. Chem. Theory Comput.
9
,
1452
(
2013
).
37.
E.
Soydaş
and
U.
Bozkaya
,
J. Comput. Chem.
35
,
1073
(
2014
).
38.
E.
Soydaş
and
U.
Bozkaya
,
J. Chem. Theory Comput.
11
,
1564
(
2015
).
39.
J. B.
Robinson
and
P. J.
Knowles
,
J. Chem. Theory Comput.
8
,
2653
(
2012
).
40.
E.
Soydaş
and
U.
Bozkaya
,
J. Chem. Theory Comput.
9
,
4679
(
2013
).
41.
U.
Bozkaya
,
J. Chem. Phys.
139
,
154105
(
2013
).
42.
U.
Bozkaya
,
J. Chem. Theory Comput.
10
,
2041
(
2014
).
43.
D.
Yildiz
and
U.
Bozkaya
,
J. Comput. Chem.
37
,
345
(
2016
).
44.
J.
Čížek
,
J. Chem. Phys.
45
,
4256
(
1966
).
45.
R. J.
Bartlett
,
Annu. Rev. Phys. Chem.
32
,
359
(
1981
).
46.
R. J.
Bartlett
,
J. Phys. Chem.
93
,
1697
(
1989
).
47.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
48.
R. J.
Bartlett
,
H.
Sekino
, and
G. D.
Purvis
 III
,
Chem. Phys. Lett.
98
,
66
(
1983
).
49.
Y. S.
Lee
,
S. A.
Kucharski
, and
R. J.
Bartlett
,
J. Chem. Phys.
81
,
5906
(
1984
).
50.
J. A.
Pople
,
M.
Head‐Gordon
, and
K.
Raghavachari
,
J. Chem. Phys.
87
,
5968
(
1987
).
51.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
52.
R. J.
Bartlett
,
J. D.
Watts
,
S. A.
Kucharski
, and
J.
Noga
,
Chem. Phys. Lett.
165
,
513
(
1990
).
53.
G. E.
Scuseria
and
T. J.
Lee
,
J. Chem. Phys.
93
,
5851
(
1990
).
54.
G. E.
Scuseria
,
T. P.
Hamilton
, and
H. F.
Schaefer
,
J. Chem. Phys.
92
,
568
(
1990
).
55.
M.
Urban
,
J.
Noga
,
S. J.
Cole
, and
R. J.
Bartlett
,
J. Chem. Phys.
83
,
4041
(
1985
).
56.
T. J.
Lee
and
G. E.
Scuseria
, in
Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy
, edited by
S. R.
Langhoff
(
Kluwer Academic
,
Dordrecht
,
1995
), pp.
47
108
.
57.
J. D.
Watts
,
J. F.
Stanton
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
178
,
471
(
1991
).
58.
G. E.
Scuseria
,
Chem. Phys. Lett.
176
,
423
(
1991
).
59.
J.
Gauss
,
W. J.
Lauderdale
,
J. F.
Stanton
,
J. D.
Watts
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
182
,
207
(
1991
).
60.
J. D.
Watts
and
R. J.
Bartlett
,
J. Chem. Phys.
96
,
6073
(
1992
).
61.
J. R.
Thomas
,
B. J.
DeLeeuw
,
G.
Vacek
,
T. D.
Crawford
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Chem. Phys.
99
,
403
(
1993
).
62.
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
8718
(
1993
).
63.
T. D.
Crawford
and
H. F.
Schaefer
,
J. Chem. Phys.
104
,
6259
(
1996
).
64.
T. D.
Crawford
,
T. J.
Lee
, and
H. F.
Schaefer
,
J. Chem. Phys.
107
,
7943
(
1997
).
65.
A. G.
Taube
and
R. J.
Bartlett
,
J. Chem. Phys.
128
,
044110
(
2008
).
66.
U.
Bozkaya
,
J. Chem. Phys.
144
,
144108
(
2016
).
67.
S. A.
Kucharski
and
R. J.
Bartlett
,
J. Chem. Phys.
108
,
5243
(
1998
).
68.
T. D.
Crawford
and
J. F.
Stanton
,
Int. J. Quantum Chem.
70
,
601
(
1998
).
69.
A. G.
Taube
and
R. J.
Bartlett
,
J. Chem. Phys.
128
,
044111
(
2008
).
70.
M.
Musiał
and
R. J.
Bartlett
,
J. Chem. Phys.
133
,
104102
(
2010
).
71.
S. R.
Gwaltney
and
M.
Head-Gordon
,
Chem. Phys. Lett.
323
,
21
(
2000
).
72.
S. R.
Gwaltney
and
M.
Head-Gordon
,
J. Chem. Phys.
115
,
2014
(
2001
).
73.
S.
Hirata
,
P.-D.
Fan
,
A. A.
Auer
,
M.
Nooijen
, and
P.
Piecuch
,
J. Chem. Phys.
121
,
12197
(
2004
).
74.
K.
Kowalski
and
P.
Piecuch
,
J. Chem. Phys.
113
,
18
(
2000
).
75.
P.
Piecuch
and
M.
Włoch
,
J. Chem. Phys.
123
,
224105
(
2005
).
76.
P.
Piecuch
,
M.
Włoch
,
J. R.
Gour
, and
A.
Kinal
,
Chem. Phys. Lett.
418
,
467
(
2006
).
77.
M.
Włoch
,
M. D.
Lodriguito
,
P.
Piecuch
, and
J. R.
Gour
,
Mol. Phys.
104
,
2149
(
2006
).
78.
M.
Włoch
,
J. R.
Gour
, and
P.
Piecuch
,
J. Phys. Chem. A
111
,
11359
(
2007
).
79.
J. J.
Eriksen
,
K.
Kristensen
,
T.
Kjœrgaard
,
P.
Jørgensen
, and
J.
Gauss
,
J. Chem. Phys.
140
,
064108
(
2014
).
80.
J. L.
Whitten
,
J. Chem. Phys.
58
,
4496
(
1973
).
81.
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
,
J. Chem. Phys.
71
,
3396
(
1979
).
82.
M.
Feyereisen
,
G.
Fitzgerald
, and
A.
Komornicki
,
Chem. Phys. Lett.
208
,
359
(
1993
).
83.
O.
Vahtras
,
J.
Almlöf
, and
M. W.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
(
1993
).
84.
A. P.
Rendell
and
T. J.
Lee
,
J. Chem. Phys.
101
,
400
(
1994
).
85.
F.
Weigend
,
Phys. Chem. Chem. Phys.
4
,
4285
(
2002
).
86.
A.
Sodt
,
J. E.
Subotnik
, and
M.
Head-Gordon
,
J. Chem. Phys.
125
,
194109
(
2006
).
87.
H.-J.
Werner
and
M.
Schütz
,
J. Chem. Phys.
135
,
144116
(
2011
).
88.
A. E.
DePrince
and
C. D.
Sherrill
,
J. Chem. Theory Comput.
9
,
2687
(
2013
).
89.
U.
Bozkaya
,
J. Chem. Phys.
141
,
124108
(
2014
).
90.
U.
Bozkaya
and
C. D.
Sherrill
,
J. Chem. Phys.
144
,
174103
(
2016
).
91.
U.
Bozkaya
and
C. D.
Sherrill
,
J. Chem. Phys.
147
,
044104
(
2017
).
92.
U.
Bozkaya
,
J. Chem. Theory Comput.
15
,
4415
(
2019
).
93.
D. G. A.
Smith
,
L. A.
Burns
,
A. C.
Simmonett
,
R. M.
Parrish
,
M. C.
Schieber
,
R.
Galvelis
,
P.
Kraus
,
H.
Kruse
,
R.
Di Remigio
,
A.
Alenaizan
,
A. M.
James
,
S.
Lehtola
,
J. P.
Misiewicz
,
M.
Scheurer
,
R. A.
Shaw
,
J. B.
Schriber
,
Y.
Xie
,
Z. L.
Glick
,
D. A.
Sirianni
,
J. S.
O’Brien
,
J. M.
Waldrop
,
A.
Kumar
,
E. G.
Hohenstein
,
B. P.
Pritchard
,
B. R.
Brooks
,
H. F.
Schaefer
,
A. Y.
Sokolov
,
K.
Patkowski
,
A. E.
DePrince
,
U.
Bozkaya
,
R. A.
King
,
F. A.
Evangelista
,
J. M.
Turney
,
T. D.
Crawford
, and
C. D.
Sherrill
,
J. Chem. Phys.
152
,
184108
(
2020
).
94.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics
, 1st ed. (
Cambridge University Press
,
New York
,
2009
), pp.
443
449
.
95.
T. D.
Crawford
and
H. F.
Schaefer
 III
,
Rev. Comput. Chem.
14
,
33
(
2000
).
96.
T.
Helgaker
and
P.
Jørgensen
,
Adv. Quantum Chem.
19
,
183
(
1988
).
97.
P.
Jørgensen
and
T.
Helgaker
,
J. Chem. Phys.
89
,
1560
(
1988
).
98.
E. A.
Salter
,
G. W.
Trucks
, and
R. J.
Bartlett
,
J. Chem. Phys.
90
,
1752
(
1989
).
99.
J.
Gauss
,
J. F.
Stanton
, and
R. J.
Bartlett
,
J. Chem. Phys.
95
,
2623
(
1991
).
100.
J.
Gauss
,
J. F.
Stanton
, and
R. J.
Bartlett
,
J. Chem. Phys.
95
,
2639
(
1991
).
101.
J.
Gauss
and
J. F.
Stanton
,
J. Chem. Phys.
103
,
3561
(
1995
).
102.
J.
Gauss
and
J. F.
Stanton
,
J. Chem. Phys.
116
,
1773
(
2001
).
103.
E.
Dalgaard
and
P.
Jørgensen
,
J. Chem. Phys.
69
,
3833
(
1978
).
104.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic Structure Theory
, 1st ed. (
John Wiley & Sons
,
New York
,
2000
), pp.
496
504
.
106.
R.
Shepard
, in
Modern Electronic Structure Theory: Part I
, 1st ed., Advanced Series in Physical Chemistry Vol. 2, edited by
D. R.
Yarkony
(
World Scientific Publishing Company
,
London
,
1995
), pp.
345
458
.
107.
N. C.
Handy
,
J. A.
Pople
,
M.
Head-Gordon
,
K.
Raghavachari
, and
G. W.
Trucks
,
Chem. Phys. Lett.
164
,
185
(
1989
).
108.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
109.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
103
,
4572
(
1995
).
110.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
).
111.
P. C.
Hariharan
and
J. A.
Pople
,
Theor. Chem. Acc.
28
,
213
(
1973
).
112.
A. D.
McLean
and
G. S.
Chandler
,
J. Chem. Phys.
72
,
5639
(
1980
).
113.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
114.
S.
Huzinaga
,
J. Chem. Phys.
42
,
1293
(
1965
).
115.
T. H.
Dunning
,
J. Chem. Phys.
53
,
2823
(
1970
).
116.
T. H.
Dunning
and
P. J.
Hay
, in
Methods of Electronic Structure Theory
, Modern Theoretical Chemistry Vol. 2, edited by
H. F.
Schaefer
(
Plenum Press
,
New York
,
1977
), pp.
1
27
.
117.
T. H.
Dunning
,
J. Chem. Phys.
55
,
716
(
1971
).
118.
F.
Weigend
,
J. Comput. Chem.
29
,
167
(
2007
).
119.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
120.
Y.
Shao
,
L. F.
Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Ochsenfeld
,
S. T.
Brown
,
A. T. B.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O’Neill
,
R. A.
DiStasio
, Jr.
,
R. C.
Lochan
,
T.
Wang
,
G. J. O.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C.
Yeh Lin
,
T.
Van Voorhis
,
S.
Hung Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P. E.
Maslen
,
P. P.
Korambath
,
R. D.
Adamson
,
B.
Austin
,
J.
Baker
,
E. F. C.
Byrd
,
H.
Dachsel
,
R. J.
Doerksen
,
A.
Dreuw
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
S.
Hirata
,
C.-P.
Hsu
,
G.
Kedziora
,
R. Z.
Khalliulin
,
P.
Klunzinger
,
A. M.
Lee
,
M. S.
Lee
,
W.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y.
Min Rhee
,
J.
Ritchie
,
E.
Rosta
,
C.
David Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnik
,
H.
Lee Woodcock
 III
,
W.
Zhang
,
A. T.
Bell
,
A. K.
Chakraborty
,
D. M.
Chipman
,
F. J.
Keil
,
A.
Warshel
,
W. J.
Hehre
,
H. F.
Schaefer
 III
,
J.
Kong
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).
121.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
120
,
6841
(
2004
).
122.
M.
Kállay
,
P. G.
Szalay
, and
P. R.
Surján
,
J. Chem. Phys.
117
,
980
(
2002
).
123.
M.
Kállay
,
J.
Gauss
, and
P. G.
Szalay
,
J. Chem. Phys.
119
,
2991
(
2003
).
124.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
121
,
9257
(
2004
).
125.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
123
,
214105
(
2005
).
126.
M.
Kállay
,
P. R.
Nagy
,
D.
Mester
,
Z.
Rolik
,
G.
Samu
,
J.
Csontos
,
J.
Csóka
,
P. B.
Szabó
,
L.
Gyevi-Nagy
,
B.
Hégely
,
I.
Ladjánszki
,
L.
Szegedy
,
B.
Ladóczki
,
K.
Petrov
,
M.
Farkas
,
P. D.
Mezei
, and
Á.
Ganyecz
,
J. Chem. Phys.
152
,
074107
(
2020
).
127.
D. A.
Matthews
,
L.
Cheng
,
M. E.
Harding
,
F.
Lipparini
,
S.
Stopkowicz
,
T.-C.
Jagau
,
P. G.
Szalay
,
J.
Gauss
, and
J. F.
Stanton
,
J. Chem. Phys.
152
,
214108
(
2020
).
128.
A.
Dutta
and
C. D.
Sherrill
,
J. Chem. Phys.
118
,
1610
(
2003
).
129.
H.
Larsen
,
J.
Olsen
,
P.
Jørgensen
, and
O.
Christiansen
,
J. Chem. Phys.
113
,
6677
(
2000
).
130.
G. S. F.
Dhont
,
J. H.
van Lenthe
,
G. C.
Groenenboom
, and
A.
van der Avoird
,
J. Chem. Phys.
123
,
184302
(
2005
).
You do not currently have access to this content.