Water confined in carbon nanotubes (CNTs) has been intensively studied because of its unique properties and potential for various applications and is often embedded in silicon nitride (Si3N4) membranes. However, the understanding of the influence of Si3N4 on the properties of water in CNTs lacks clarity. In this study, we performed molecular dynamics simulations to investigate the effect of the Si3N4 membrane on water molecules inside CNTs. The internal electric field generated in the CNTs by the point charges of the Si3N4 membrane changes the structure and dynamical properties of water in the nanotubes, causing it to attain a disordered structure. The Si3N4 membrane decreases the diffusivity of water in the CNTs; this is because the Coulomb potential energy (i.e., electrostatic interaction) of water decreases owing to the presence of Si3N4, whereas the Lennard-Jones potential energy (i.e., van der Waals interaction) does not change significantly. Furthermore, electrostatic interactions make the water structure more stable in the CNTs. As a result, the Si3N4 membrane enhances the separation effect of the water–methanol mixture with CNTs in the presence of an external electric field. Furthermore, the threshold of the external electric field strength to induce water–methanol separation with CNTs is reduced owing to the presence of a silicon nitride membrane.

1.
G.
Hummer
,
J. C.
Rasaiah
, and
J. P.
Noworyta
, “
Water conduction through the hydrophobic channel of a carbon nanotube
,”
Nature
414
,
188
190
(
2001
).
2.
M.
Majumder
,
N.
Chopra
,
R.
Andrews
, and
B. J.
Hinds
, “
Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes
,”
Nature
438
,
44
(
2005
).
3.
J. K.
Holt
,
H. G.
Park
,
Y.
Wang
,
M.
Stadermann
,
A. B.
Artyukhin
,
C. P.
Grigoropoulos
,
A.
Noy
, and
O.
Bakajin
, “
Fast mass transport through sub-2-nanometer carbon nanotubes
,”
Science
312
,
1034
1037
(
2006
).
4.
X.
Qin
,
Q.
Yuan
,
Y.
Zhao
,
S.
Xie
, and
Z.
Liu
, “
Measurement of the rate of water translocation through carbon nanotubes
,”
Nano Lett.
11
,
2173
2177
(
2011
).
5.
Q.
Xie
,
M. A.
Alibakhshi
,
S.
Jiao
,
Z.
Xu
,
M.
Hempel
,
J.
Kong
,
H. G.
Park
, and
C.
Duan
, “
Fast water transport in graphene nanofluidic channels
,”
Nat. Nanotechnol.
13
,
238
245
(
2018
).
6.
H.
Yoshida
,
V.
Kaiser
,
B.
Rotenberg
, and
L.
Bocquet
, “
Dripplons as localized and superfast ripples of water confined between graphene sheets
,”
Nat. Commun.
9
,
1496
(
2018
).
7.
S. K.
Kannam
,
B. D.
Todd
,
J. S.
Hansen
, and
P. J.
Daivis
, “
How fast does water flow in carbon nanotubes?
,”
J. Chem. Phys.
138
,
094701
(
2013
).
8.
M.
Heiranian
and
N. R.
Aluru
, “
Nanofluidic transport theory with enhancement factors approaching one
,”
ACS Nano
14
,
272
281
(
2019
).
9.
A.
Sam
,
V.
Prasad K
, and
S. P.
Sathian
, “
Water flow in carbon nanotubes: The role of tube chirality
,”
Phys. Chem. Chem. Phys.
21
,
6566
6573
(
2019
).
10.
K.
Koga
,
G. T.
Gao
,
H.
Tanaka
, and
X. C.
Zeng
, “
Formation of ordered ice nanotubes inside carbon nanotubes
,”
Nature
412
,
802
805
(
2001
).
11.
Y.
Maniwa
,
H.
Kataura
,
M.
Abe
,
A.
Udaka
,
S.
Suzuki
,
Y.
Achiba
,
H.
Kira
,
K.
Matsuda
,
H.
Kadowaki
, and
Y.
Okabe
, “
Ordered water inside carbon nanotubes: Formation of pentagonal to octagonal ice-nanotubes
,”
Chem. Phys. Lett.
401
,
534
538
(
2005
).
12.
D.
Takaiwa
,
I.
Hatano
,
K.
Koga
, and
H.
Tanaka
, “
Phase diagram of water in carbon nanotubes
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
39
43
(
2008
).
13.
P.
Pugliese
,
M. M.
Conde
,
M.
Rovere
, and
P.
Gallo
, “
Freezing temperatures, ice nanotubes structures, and proton ordering of TIP4P/ICE water inside single wall carbon nanotubes
,”
J. Phys. Chem. B
121
,
10371
10381
(
2017
).
14.
N. J.
English
and
C. J.
Waldron
, “
Perspectives on external electric fields in molecular simulation: Progress, prospects and challenges
,”
Phys. Chem. Chem. Phys.
17
,
12407
12440
(
2015
).
15.
Winarto
,
D.
Takaiwa
,
E.
Yamamoto
, and
K.
Yasuoka
, “
Structures of water molecules in carbon nanotubes under electric fields
,”
J. Chem. Phys.
142
,
124701
(
2015
).
16.
Y.
He
,
G.
Sun
,
K.
Koga
, and
L.
Xu
, “
Electrostatic field-exposed water in nanotube at constant axial pressure
,”
Sci. Rep.
4
,
6596
(
2014
).
17.
M. S.
Sansom
and
P. C.
Biggin
, “
Biophysics: Water at the nanoscale
,”
Nature
414
,
156
159
(
2001
).
18.
R. H.
Tunuguntla
,
R. Y.
Henley
,
Y.-C.
Yao
,
T. A.
Pham
,
M.
Wanunu
, and
A.
Noy
, “
Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins
,”
Science
357
,
792
796
(
2017
).
19.
C. I.
Lynch
,
S.
Rao
, and
M. S. P.
Sansom
, “
Water in nanopores and biological channels: A molecular simulation perspective
,”
Chem. Rev.
120
,
10298
10335
(
2020
).
20.
Z.
Insepov
,
D.
Wolf
, and
A.
Hassanein
, “
Nanopumping using carbon nanotubes
,”
Nano Lett.
6
,
1893
1895
(
2006
).
21.
M. J.
Longhurst
and
N.
Quirke
, “
Temperature-driven pumping of fluid through single-walled carbon nanotubes
,”
Nano Lett.
7
,
3324
3328
(
2007
).
22.
M.
Thomas
and
B.
Corry
, “
A computational assessment of the permeability and salt rejection of carbon nanotube membranes and their application to water desalination
,”
Philos. Trans. R. Soc., A
374
,
20150020
(
2016
).
23.
Q.
Tu
,
Q.
Yang
,
H.
Wang
, and
S.
Li
, “
Rotating carbon nanotube membrane filter for water desalination
,”
Sci. Rep.
6
,
26183
(
2016
).
24.
V. V.
Chaban
and
O. V.
Prezhdo
, “
Water boiling inside carbon nanotubes: Toward efficient drug release
,”
ACS Nano
5
,
5647
5655
(
2011
).
25.
C.
Fabbro
,
H.
Ali-Boucetta
,
T.
Da Ros
,
K.
Kostarelos
,
A.
Bianco
, and
M.
Prato
, “
Targeting carbon nanotubes against cancer
,”
Chem. Commun.
48
,
3911
3926
(
2012
).
26.
C.
Liu
,
Y. Y.
Fan
,
M.
Liu
,
H. T.
Cong
,
H. M.
Cheng
, and
M. S.
Dresselhaus
, “
Hydrogen storage in single-walled carbon nanotubes at room temperature
,”
Science
286
,
1127
1129
(
1999
).
27.
S. L.
Candelaria
,
Y.
Shao
,
W.
Zhou
,
X.
Li
,
J.
Xiao
,
J.-G.
Zhang
,
Y.
Wang
,
J.
Liu
,
J.
Li
, and
G.
Cao
, “
Nanostructured carbon for energy storage and conversion
,”
Nano Energy
1
,
195
220
(
2012
).
28.
H. G.
Park
and
Y.
Jung
, “
Carbon nanofluidics of rapid water transport for energy applications
,”
Chem. Soc. Rev.
43
,
565
576
(
2014
).
29.
Z.
Fu
,
D.
Liang
,
S.
Jiang
,
P.
Zhao
,
K.
Han
, and
Z.
Xu
, “
Effects of radius and length on the nanomotor rotors in aqueous solution driven by the rotating electric field
,”
J. Phys. Chem. C
123
,
30649
30656
(
2019
).
30.
Y.
Wang
,
Y. J.
Zhao
, and
J. P.
Huang
, “
Giant pumping of single-file water molecules in a carbon nanotube
,”
J. Phys. Chem. B
115
,
13275
13279
(
2011
).
31.
J.
Kou
,
X.
Zhou
,
H.
Lu
,
Y.
Xu
,
F.
Wu
, and
J.
Fan
, “
A vibration-charge-induced unidirectional transport of water molecules in confined nanochannels
,”
Soft Matter
8
,
12111
12115
(
2012
).
32.
S.
De Luca
,
B. D.
Todd
,
J. S.
Hansen
, and
P. J.
Daivis
, “
Electropumping of water with rotating electric fields
,”
J. Chem. Phys.
138
,
154712
(
2013
).
33.
D.
Ostler
,
S. K.
Kannam
,
P. J.
Daivis
,
F.
Frascoli
, and
B. D.
Todd
, “
Electropumping of water in functionalized carbon nanotubes using rotating electric fields
,”
J. Phys. Chem. C
121
,
28158
28165
(
2017
).
34.
X.-P.
Li
,
G.-P.
Kong
,
X.
Zhang
, and
G.-W.
He
, “
Pumping of water through carbon nanotubes by rotating electric field and rotating magnetic field
,”
Appl. Phys. Lett.
103
,
143117
(
2013
).
35.
J.
Rabinowitz
,
C.
Cohen
, and
K. L.
Shepard
, “
An electrically actuated, carbon-nanotube-based biomimetic ion pump
,”
Nano Lett.
20
,
1148
1153
(
2019
).
36.
K.
Zhao
and
H.
Wu
, “
Fast water thermo-pumping flow across nanotube membranes for desalination
,”
Nano Lett.
15
,
3664
3668
(
2015
).
37.
E.
Oyarzua
,
J. H.
Walther
,
C. M.
Megaridis
,
P.
Koumoutsakos
, and
H. A.
Zambrano
, “
Carbon nanotubes as thermally induced water pumps
,”
ACS Nano
11
,
9997
10002
(
2017
).
38.
X.
Shi
,
Y.
Cheng
,
N. M.
Pugno
, and
H.
Gao
, “
Tunable water channels with carbon nanoscrolls
,”
Small
6
,
739
744
(
2010
).
39.
K. F.
Rinne
,
S.
Gekle
,
D. J.
Bonthuis
, and
R. R.
Netz
, “
Nanoscale pumping of water by AC electric fields
,”
Nano Lett.
12
,
1780
1783
(
2012
).
40.
J.-w.
Feng
,
H.-m.
Ding
,
C.-l.
Ren
, and
Y.-q.
Ma
, “
Pumping of water by rotating chiral carbon nanotube
,”
Nanoscale
6
,
13606
13612
(
2014
).
41.
G.
Arora
and
S. I.
Sandler
, “
Molecular sieving using single wall carbon nanotubes
,”
Nano Lett.
7
,
565
569
(
2007
).
42.
J.
Lee
and
N. R.
Aluru
, “
Separation of gases from gas–water mixtures using carbon nanotubes
,”
Appl. Phys. Lett.
96
,
133108
(
2010
).
43.
L.
Liu
,
D.
Nicholson
, and
S. K.
Bhatia
, “
Impact of H2O on CO2 separation from natural gas: Comparison of carbon nanotubes and disordered carbon
,”
J. Phys. Chem. C
119
,
407
419
(
2014
).
44.
M. I.
Romero-Hermida
,
J. M.
Romero-Enrique
,
V.
Morales-Flórez
, and
L.
Esquivias
, “
Flue gas adsorption by single-wall carbon nanotubes: A Monte Carlo study
,”
J. Chem. Phys.
145
,
074701
(
2016
).
45.
J.
Goldsmith
and
C. C.
Martens
, “
Molecular dynamics simulation of salt rejection in model surface-modified nanopores
,”
J. Phys. Chem. Lett.
1
,
528
535
(
2009
).
46.
Winarto
,
D.
Takaiwa
,
E.
Yamamoto
, and
K.
Yasuoka
, “
Water-methanol separation with carbon nanotubes and electric fields
,”
Nanoscale
7
,
12659
12665
(
2015
).
47.
Winarto
,
E.
Yamamoto
, and
K.
Yasuoka
, “
Separation of water–alcohol mixtures using carbon nanotubes under an electric field
,”
Phys. Chem. Chem. Phys.
21
,
15431
15438
(
2019
).
48.
X.
Gong
,
J.
Li
,
K.
Xu
,
J.
Wang
, and
H.
Yang
, “
A controllable molecular sieve for Na+ and K+ ions
,”
J. Am. Chem. Soc.
132
,
1873
1877
(
2010
).
49.
G.
Zuo
,
R.
Shen
,
S.
Ma
, and
W.
Guo
, “
Transport properties of single-file water molecules inside a carbon nanotube biomimicking water channel
,”
ACS Nano
4
,
205
210
(
2010
).
50.
J.
Su
and
H.
Guo
, “
Effect of nanochannel dimension on the transport of water molecules
,”
J. Phys. Chem. B
116
,
5925
5932
(
2012
).
51.
J.
Su
and
H.
Guo
, “
Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field
,”
ACS Nano
5
,
351
359
(
2010
).
52.
J. H.
Walther
,
K.
Ritos
,
E. R.
Cruz-Chu
,
C. M.
Megaridis
, and
P.
Koumoutsakos
, “
Barriers to superfast water transport in carbon nanotube membranes
,”
Nano Lett.
13
,
1910
1914
(
2013
).
53.
Winarto
,
E.
Yamamoto
, and
K.
Yasuoka
, “
Water molecules in a carbon nanotube under an applied electric field at various temperatures and pressures
,”
Water
9
,
473
(
2017
).
54.
W.-H.
Zhao
,
B.
Shang
,
S.-P.
Du
,
L.-F.
Yuan
,
J.
Yang
, and
X. C.
Zeng
, “
Highly selective adsorption of methanol in carbon nanotubes immersed in methanol-water solution
,”
J. Chem. Phys.
137
,
034501
(
2012
).
55.
X.
Tian
,
Z.
Yang
,
B.
Zhou
,
P.
Xiu
, and
Y.
Tu
, “
Alcohol-induced drying of carbon nanotubes and its implications for alcohol/water separation: A molecular dynamics study
,”
J. Chem. Phys.
138
,
204711
(
2013
).
56.
J. K.
Holt
,
A.
Noy
,
T.
Huser
,
D.
Eaglesham
, and
O.
Bakajin
, “
Fabrication of a carbon nanotube-embedded silicon nitride membrane for studies of nanometer-scale mass transport
,”
Nano Lett.
4
,
2245
2250
(
2004
).
57.
B. J.
Hinds
,
N.
Chopra
,
T.
Rantell
,
R.
Andrews
,
V.
Gavalas
, and
L. G.
Bachas
, “
Aligned multiwalled carbon nanotube membranes
,”
Science
303
,
62
65
(
2004
).
58.
T. A.
Hilder
,
D.
Gordon
, and
S.-H.
Chung
, “
Salt rejection and water transport through boron nitride nanotubes
,”
Small
5
,
2183
2190
(
2009
).
59.
J.
Azamat
,
J. J.
Sardroodi
, and
A.
Rastkar
, “
Water desalination through armchair carbon nanotubes: A molecular dynamics study
,”
RSC Adv.
4
,
63712
63718
(
2014
).
60.
J.
Azamat
,
A.
Khataee
, and
S. W.
Joo
, “
Removal of heavy metals from water through armchair carbon and boron nitride nanotubes: A computer simulation study
,”
RSC Adv.
5
,
25097
25104
(
2015
).
61.
A.
Aksimentiev
and
J.
Comer
, Bionanotechnology Tutorial, University of Illinois at Urbana-Champaign Beckman Institute for Advanced Science and Technology Theoretical and Computational Biophysics Group Computational Biophysics Workshop, http://www.ks.uiuc.edu/Training/Tutorials/science/bionano/bionano-tutorial.pdf,
2011
.
62.
J. A.
Wendel
and
W. A.
Goddard
 III
, “
The hessian biased force field for silicon nitride ceramics: Predictions of thermodynamic and mechanical properties for α-and β-Si3N4
,”
J. Chem. Phys.
97
,
5048
5062
(
1992
).
63.
A.
Aksimentiev
,
J. B.
Heng
,
G.
Timp
, and
K.
Schulten
, “
Microscopic kinetics of DNA translocation through synthetic nanopores
,”
Biophys. J.
87
,
2086
2097
(
2004
).
64.
J. B.
Heng
,
A.
Aksimentiev
,
C.
Ho
,
P.
Marks
,
Y. V.
Grinkova
,
S.
Sligar
,
K.
Schulten
, and
G.
Timp
, “
Stretching DNA using the electric field in a synthetic nanopore
,”
Nano Lett.
5
,
1883
1888
(
2005
).
65.
C.
Ho
,
R.
Qiao
,
J. B.
Heng
,
A.
Chatterjee
,
R. J.
Timp
,
N. R.
Aluru
, and
G.
Timp
, “
Electrolytic transport through a synthetic nanometer-diameter pore
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
10445
10450
(
2005
).
66.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
Van Gunsteren
, and
J.
Hermans
, “
Interaction models for water in relation to protein hydration
,”
Intermol. Forces
14
,
331
342
(
1981
).
67.
W. L.
Jorgensen
, “
Optimized intermolecular potential functions for liquid alcohols
,”
J. Phys. Chem.
90
,
1276
1284
(
1986
).
68.
W. L.
Jorgensen
,
J. M.
Briggs
, and
M. L.
Contreras
, “
Relative partition coefficients for organic solutes from fluid simulations
,”
J. Phys. Chem.
94
,
1683
1686
(
1990
).
69.
B.
Hess
,
C.
Kutzner
,
D.
Van Der Spoel
, and
E.
Lindahl
, “
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation
,”
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
70.
J.-P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
, “
Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes
,”
J. Comput. Phys.
23
,
327
341
(
1977
).
71.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
Particle mesh Ewald: An N log(N) method for Ewald sums in large systems
,”
J. Chem. Phys.
98
,
10089
(
1993
).
72.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
(
1981
).
73.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
(
1984
).
74.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
75.
J.
Martí
, “
Analysis of the hydrogen bonding and vibrational spectra of supercritical model water by molecular dynamics simulations
,”
J. Chem. Phys.
110
,
6876
(
1999
).
76.
M. C.
Gordillo
and
J.
Martí
, “
Hydrogen bond structure of liquid water confined in nanotubes
,”
Chem. Phys. Lett.
329
,
341
345
(
2000
).
77.
A.
Luzar
and
D.
Chandler
, “
Hydrogen-bond kinetics in liquid water
,”
Nature
379
,
55
57
(
1996
).
78.
S.
Paul
and
A.
Chandra
, “
Hydrogen bond dynamics at vapour–water and metal–water interfaces
,”
Chem. Phys. Lett.
386
,
218
224
(
2004
).
79.
J.
Zielkiewicz
, “
Structural properties of water: Comparison of the SPC, SPCE, TIP4P, and TIP5P models of water
,”
J. Chem. Phys.
123
,
104501
(
2005
).
80.
J. L. F.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
,
234505
(
2005
).
81.
G.
Guevara-Carrion
,
J.
Vrabec
, and
H.
Hasse
, “
Prediction of self-diffusion coefficient and shear viscosity of water and its binary mixtures with methanol and ethanol by molecular simulation
,”
J. Chem. Phys.
134
,
074508
(
2011
).
82.
Y. S.
Badyal
,
M.-L.
Saboungi
,
D. L.
Price
,
S. D.
Shastri
,
D. R.
Haeffner
, and
A. K.
Soper
, “
Electron distribution in water
,”
J. Chem. Phys.
112
,
9206
9208
(
2000
).
83.
A. V.
Gubskaya
and
P. G.
Kusalik
, “
The total molecular dipole moment for liquid water
,”
J. Chem. Phys.
117
,
5290
5302
(
2002
).
84.
M.
Pagliai
,
G.
Cardini
,
R.
Righini
, and
V.
Schettino
, “
Hydrogen bond dynamics in liquid methanol
,”
J. Chem. Phys.
119
,
6655
6662
(
2003
).
85.
L. X.
Dang
and
T.-M.
Chang
, “
Many-body interactions in liquid methanol and its liquid/vapor interface: A molecular dynamics study
,”
J. Chem. Phys.
119
,
9851
9857
(
2003
).
86.
Winarto
,
D.
Takaiwa
,
E.
Yamamoto
, and
K.
Yasuoka
, “
Separation of water-ethanol solutions with carbon nanotubes and electric fields
,”
Phys. Chem. Chem. Phys.
18
,
33310
33319
(
2016
).

Supplementary Material

You do not currently have access to this content.