In this paper, we present a comparative study of the redox properties of the icosahedral [Rh12E(CO)27]n− (n = 4 when E = Ge or Sn and n = 3 when E = Sb or Bi) family of clusters through in situ infrared spectroelectrochemistry experiments and density functional theory computational studies. These clusters show shared characteristics in terms of molecular structure, being all E-centered icosahedral species, and electron counting, possessing 170 valence electrons as predicted by the electron-counting rules, based on the cluster-borane analogy, for compounds with such metal geometry. However, in some cases, clusters of similar nuclearity, and beyond, may show multivalence behavior and may be stable with a different electron counting, at least on the time scale of the electrochemical analyses. The experimental results, confirmed by theoretical calculations, showed a remarkable electron-sponge behavior for [Rh12Ge(CO)27]4− (1), [Rh12Sb(CO)27]3− (3), and [Rh12Bi(CO)27]3− (4), with a cluster charge going from −2 to −6 for 1 and 3 and from −2 to −7 for cluster 4, making them examples of molecular electron reservoirs. The [Rh12Sn(CO)27]4− (2) derivative, conversely, presents a limited ability to exist in separable reduced cluster species, at least within the experimental conditions, while in the gas phase it appears to be stable both as a penta- and hexa-anion, therefore showing a similar redox activity as its congeners. As a fallout of those studies, during the preparation of [Rh12Sb(CO)27]3−, we were able to isolate a new species, namely, [Rh11Sb(CO)26]2−, which presents a Sb-centered nido-icosahedral metal structure possessing 158 cluster valence electrons, in perfect agreement with the polyhedral skeletal electron pair theory.

1.
D. F.
Shriver
,
D. K.
Herbert
, and
R. D.
Adams
,
The Chemistry of Metal Cluster Complexes
(
VCH
,
New York
,
1990
).
2.
Clusters and Colloids: From Theory to Applications
, edited by
G.
Schmid
(
VCH
,
Weinheim
,
1994
).
3.
Physics and Chemistry of Metal Cluster Compounds
, edited by
L. J.
De Jongh
(
Kluwer
,
Dordrecht
,
1994
).
4.
Metal Clusters in Chemistry
, edited by
P.
Braunstein
,
L. A.
Oro
, and
P. R.
Raithby
(
WileyVCH
,
Weinheim
,
1999
).
5.
D. M. P.
Mingos
,
Acc. Chem. Res.
17
,
311
(
1984
).
6.
B. K.
Teo
,
Inorg. Chem.
23
,
1251
(
1984
).
7.
C.
Femoni
,
M. C.
Iapalucci
,
F.
Kaswalder
,
G.
Longoni
, and
S.
Zacchini
,
Coord. Chem. Rev.
250
,
1580
(
2006
).
8.
A.
Fumagalli
,
P.
Ulivieri
,
M.
Costa
,
O.
Crispu
,
R.
Della Pergola
,
F.
Fabrizi de Biani
,
F.
Laschi
,
P.
Zanello
,
P.
Macchi
, and
A.
Sironi
,
Inorg. Chem.
43
,
2125
(
2004
).
9.
K.
Kwak
and
D.
Lee
,
Acc. Chem. Res.
52
,
12
(
2019
).
10.
R.
Jin
,
C.
Zeng
,
M.
Zhou
, and
Y.
Chen
,
Chem. Rev.
116
,
10346
(
2016
).
11.
G.
Longoni
,
M.
Manassero
, and
M.
Sansoni
,
J. Am. Chem. Soc.
102
,
7973
(
1980
).
12.
R. D.
Adams
,
I.
Arafa
,
G.
Chen
,
J. C.
Lii
, and
J. G.
Wang
,
Organometallics
9
,
2350
(
1990
).
13.
F.
Calderoni
,
F.
Demartin
,
F. F.
de Biani
,
C.
Femoni
,
M. C.
Iapalucci
,
G.
Longoni
, and
P.
Zanello
,
Eur. J. Inorg. Chem.
1999
,
663
.
14.
K.-F.
Yung
and
W.-T.
Wong
,
Angew. Chem., Int. Ed.
42
,
553
(
2003
).
15.
O.
Cador
,
H.
Cattey
,
J.-F.
Halet
,
W.
Meier
,
Y.
Mugnier
,
J.
Wachter
,
J.-Y.
Saillard
,
B.
Zouchoune
, and
M.
Zabel
,
Inorg. Chem.
46
,
501
(
2007
).
16.
B.
Berti
,
C.
Cesari
,
C.
Femoni
,
T.
Funaioli
,
M. C.
Iapalucci
, and
S.
Zacchini
,
Dalton Trans.
49
,
5513
(
2020
).
17.
C.
Femoni
,
T.
Funaioli
,
M. C.
Iapalucci
,
S.
Ruggieri
, and
S.
Zacchini
,
Inorg. Chem.
59
,
4300
(
2020
).
18.
N. T.
Tran
,
D. R.
Powell
, and
L. F.
Dahl
,
Dalton Trans.
4
,
209
(
2004
).
19.
A.
Ceriotti
,
P.
Macchi
,
A.
Sironi
,
S.
El Afefey
,
M.
Daghetta
,
S.
Fedi
,
F. F.
de Biani
, and
R.
Della Pergola
,
Inorg. Chem.
52
,
1960
(
2013
).
20.
M.
Kawano
,
J. W.
Bacon
,
C. F.
Campana
,
B. E.
Winger
,
J. D.
Dudek
,
S. A.
Sirchio
,
S. L.
Scruggs
,
U.
Geiser
, and
L. F.
Dahl
,
Inorg. Chem.
40
,
2554
(
2001
).
21.
C.
Femoni
,
M. C.
Iapalucci
,
S.
Ruggieri
, and
S.
Zacchini
,
Acc. Chem. Res.
51
,
2748
(
2018
).
22.
C.
Femoni
,
M. C.
Iapalucci
,
G.
Longoni
,
C.
Tiozzo
,
S.
Zacchini
,
B. T.
Heaton
, and
J. A.
Iggo
,
Dalton Trans.
35
,
3914
(
2007
).
23.
A.
Boccalini
,
P. J.
Dyson
,
C.
Femoni
,
M. C.
Iapalucci
,
S.
Ruggieri
, and
S.
Zacchini
,
Dalton Trans.
47
,
15737
(
2018
).
24.
J. L.
Vidal
and
J. M.
Troup
,
J. Organomet. Chem.
213
,
351
(
1981
).
25.
C.
Femoni
,
I.
Ciabatti
,
M. C.
Iapalucci
,
S.
Ruggieri
, and
S.
Zacchini
,
Pro. Nat. Sci.: Mater. Int.
26
,
461
(
2016
).
26.
C.
Femoni
,
G.
Bussoli
,
I.
Ciabatti
,
M.
Ermini
,
M.
Hayatifar
,
M. C.
Iapalucci
,
S.
Ruggieri
, and
S.
Zacchini
,
Inorg. Chem.
56
,
6343
(
2017
).
27.
S.
Martinengo
and
P.
Chini
,
Gazz. Chim. It.
102
,
344
(
1972
).
28.
J. D.
Roth
,
G. J.
Lewis
,
L. K.
Safford
,
X.
Jiang
,
L. F.
Dahl
, and
M. J.
Weaver
,
J. Am. Chem. Soc.
114
,
6159
(
1992
).
29.
C.
Capacci
,
I.
Ciabatti
,
C.
Femoni
,
M. C.
Iapalucci
,
T.
Funaioli
,
S.
Zacchini
, and
V.
Zanotti
,
Inorg. Chem.
57
,
1136
(
2018
).
30.
R. D.
Pergola
,
M.
Bruschi
,
A.
Sironi
,
M.
Manassero
,
C.
Manassero
,
D.
Strumolo
,
S.
Fedi
, and
P.
Zanello
,
Dalton Trans.
40
,
5464
(
2011
).
31.
A.
Albinati
,
F.
Balzano
,
F.
Fabrizi de Biani
,
P.
Leoni
,
G.
Manca
,
L.
Marchetti
,
S.
Rizzato
,
G.
Uccello Barretta
, and
P.
Zanello
,
Inorg. Chem.
49
,
3714
(
2010
).
32.
O. F.
Koentjoro
,
P. J.
Low
,
R.
Rousseau
,
C.
Nervi
,
D. S.
Yufit
,
J. A. K.
Howard
, and
K. A.
Udachin
,
Organometallics
24
,
1284
(
2005
).
33.
M.
Krejčik
,
M.
Danĕk
, and
F. H. J.
Electroanal
,
Chem. Interfacial Electrochem.
317
,
179
(
1991
).
34.
M. E.
Prater
,
L. E.
Pence
,
R.
Clérac
,
G. M.
Finniss
,
C.
Campana
,
P.
Auban-Senzier
,
D.
Jérome
,
E.
Canadell
, and
K. R.
Dunbar
,
J. Am. Chem. Soc.
121
,
8005
(
1999
).
35.
V. G.
Albano
,
F.
Demartin
,
M. C.
Iapalucci
,
G.
Longoni
,
F.
Laschi
,
G.
Longoni
,
A.
Sironi
, and
P.
Zanello
,
J. Chem. Soc. Dalton Trans.
739
(
1991
).
36.
B. K.
Teo
and
H.
Zhang
,
Polyhedron
9
,
1985
(
1990
).
37.
M. J.
Frisch
 et al, Gaussian Revision C.01,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
38.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
39.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B: Condens. Matter Mater. Phys.
37
,
785
(
1988
).
40.
M.
Dolg
,
U.
Wedig
,
H.
Stoll
, and
H.
Preuss
,
J. Chem. Phys.
86
,
866
(
1987
).
41.
P. J.
Hay
and
W. R.
Wadt
,
J. Chem. Phys.
82
,
299
(
1985
).
42.
M. M.
Francl
,
W. J.
Pietro
,
W. J.
Hehre
,
J. S.
Binkley
,
M. S.
Gordon
,
D. J.
DeFrees
, and
J. A.
Pople
,
J. Chem. Phys.
77
,
3654
(
1982
).
43.
NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 21, August 2020, edited by
R. D.
Johnson
 III
(
NIST
,
2020
), http://cccbdb.nist.gov.
44.
G. M. S.
Sheldrick
, Program for Empirical Absorption Correction,
University of Göttingen
,
Germany
,
1996
.
45.
G. M.
Sheldrick
, SHELX 2014/7, Program for Crystal Structure Determination,
University of Göttingen
,
Germany
,
2014
.
46.
E.
Keller
, SCHAKAL99,
University of Freiburg
,
Germany
,
1999
.
47.
K.
Wade
,
Inorg. Nucl. Chem. Lett.
14
,
71
(
1978
).
48.
A. K.
Hughes
and
K.
Wade
,
Coord. Chem. Rev.
197
,
191
(
2000
).

Supplementary Material

You do not currently have access to this content.