A machine learning (ML) methodology that uses a histogram of interaction energies has been applied to predict gas adsorption in metal–organic frameworks (MOFs) using results from atomistic grand canonical Monte Carlo (GCMC) simulations as training and test data. In this work, the method is first extended to binary mixtures of spherical species, in particular, Xe and Kr. In addition, it is shown that single-component adsorption of ethane and propane can be predicted in good agreement with GCMC simulation using a histogram of the adsorption energies felt by a methyl probe in conjunction with the random forest ML method. The results for propane can be improved by including a small number of MOF textural properties as descriptors. We also discuss the most significant features, which provides physical insight into the most beneficial adsorption energy sites for a given application.

1.
R.
Tibshirani
, “
Regression shrinkage and selection via the lasso
,”
J. R. Stat. Soc., Ser. B
58
(
1
),
267
288
(
1996
).
2.
L.
Breiman
, “
Random forests
,”
Mach. Learn.
45
(
1
),
5
32
(
2001
).
3.
A.
Liaw
and
M.
Wiener
, “
Classification and regression by randomForest
,”
R News
2
,
18
22
(
2002
); available at https://cran.r-project.org/doc/Rnews/Rnews_2002-3.pdf.
4.
M.
Abadi
,
P.
Barham
,
J.
Chen
,
Z.
Chen
,
A.
Davis
,
J.
Dean
,
M.
Devin
,
S.
Ghemawat
,
G.
Irving
,
M.
Isard
,
M.
Kudlur
,
J.
Levenberg
,
R.
Monga
,
S.
Moore
,
D. G.
Murray
,
B.
Steiner
,
P.
Tucker
,
V.
Vasudevan
,
P.
Warden
,
M.
Wicke
,
Y.
Yu
, and
X.
Zheng
, “
TensorFlow: A system for large-scale machine learning
,” in
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16)
(
The Advanced Computing Systems Association
,
2016
), pp.
265
283
.
5.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
, “
Fast and accurate modeling of molecular atomization energies with machine learning
,”
Phys. Rev. Lett.
108
(
5
),
058301
(
2012
).
6.
O. A.
von Lilienfeld
,
R.
Ramakrishnan
,
M.
Rupp
, and
A.
Knoll
, “
Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties
,”
Int. J. Quantum Chem.
115
(
16
),
1084
1093
(
2015
).
7.
C. M.
Simon
,
R.
Mercado
,
S. K.
Schnell
,
B.
Smit
, and
M.
Haranczyk
, “
What are the best materials to separate a xenon/krypton mixture?
,”
Chem. Mater.
27
(
12
),
4459
4475
(
2015
).
8.
S.
Chmiela
,
A.
Tkatchenko
,
H. E.
Sauceda
,
I.
Poltavsky
,
K. T.
Schütt
, and
K.-R.
Müller
, “
Machine learning of accurate energy-conserving molecular force fields
,”
Sci. Adv.
3
(
5
),
e1603015
(
2017
).
9.
N. S.
Bobbitt
and
R. Q.
Snurr
, “
Molecular modelling and machine learning for high-throughput screening of metal-organic frameworks for hydrogen storage
,”
Mol. Simul.
45
(
14-15
),
1069
1081
(
2019
).
10.
Y.
Sun
,
R. F.
DeJaco
, and
J. I.
Siepmann
, “
Deep neural network learning of complex binary sorption equilibria from molecular simulation data
,”
Chem. Sci.
10
(
16
),
4377
4388
(
2019
).
11.
S. M.
Moosavi
,
K. M.
Jablonka
, and
B.
Smit
, “
The role of machine learning in the understanding and design of materials
,”
J. Am. Chem. Soc.
142
(
48
),
20273
20287
(
2020
).
12.
K. M.
Jablonka
,
D.
Ongari
,
S. M.
Moosavi
, and
B.
Smit
, “
Big-data science in porous materials: Materials genomics and machine learning
,”
Chem. Rev.
120
(
16
),
8066
8129
(
2020
).
13.
Z.
Shi
,
W.
Yang
,
X.
Deng
,
C.
Cai
,
Y.
Yan
,
H.
Liang
,
Z.
Liu
, and
Z.
Qiao
, “
Machine-learning-assisted high-throughput computational screening of high performance metal–organic frameworks
,”
Mol. Syst. Des. Eng.
5
(
4
),
725
742
(
2020
).
14.
Y. J.
Colón
,
D. A.
Gómez-Gualdrón
, and
R. Q.
Snurr
, “
Topologically guided, automated construction of metal–organic frameworks and their evaluation for energy-related applications
,”
Cryst. Growth Des.
17
(
11
),
5801
5810
(
2017
).
15.
Y. G.
Chung
,
E.
Haldoupis
,
B. J.
Bucior
,
M.
Haranczyk
,
S.
Lee
,
H.
Zhang
,
K. D.
Vogiatzis
,
M.
Milisavljevic
,
S.
Ling
,
J. S.
Camp
,
B.
Slater
,
J. I.
Siepmann
,
D. S.
Sholl
, and
R. Q.
Snurr
, “
Advances, updates, and analytics for the computation-ready, experimental metal–organic framework database: CoRE MOF 2019
,”
J. Chem. Eng. Data
64
(
12
),
5985
5998
(
2019
).
16.
P. Z.
Moghadam
,
A.
Li
,
S. B.
Wiggin
,
A.
Tao
,
A. G. P.
Maloney
,
P. A.
Wood
,
S. C.
Ward
, and
D.
Fairen-Jimenez
, “
Development of a cambridge structural database subset: A collection of metal–organic frameworks for past, present, and future
,”
Chem. Mater.
29
(
7
),
2618
2625
(
2017
).
17.
C. E.
Wilmer
,
M.
Leaf
,
C. Y.
Lee
,
O. K.
Farha
,
B. G.
Hauser
,
J. T.
Hupp
, and
R. Q.
Snurr
, “
Large-scale screening of hypothetical metal–organic frameworks
,”
Nat. Chem.
4
,
83
(
2011
).
18.
A. W.
Thornton
,
C. M.
Simon
,
J.
Kim
,
O.
Kwon
,
K. S.
Deeg
,
K.
Konstas
,
S. J.
Pas
,
M. R.
Hill
,
D. A.
Winkler
,
M.
Haranczyk
, and
B.
Smit
, “
Materials genome in action: Identifying the performance limits of physical hydrogen storage
,”
Chem. Mater.
29
(
7
),
2844
2854
(
2017
).
19.
G. S.
Fanourgakis
,
K.
Gkagkas
,
E.
Tylianakis
, and
G. E.
Froudakis
, “
A universal machine learning algorithm for large-scale screening of materials
,”
J. Am. Chem. Soc.
142
(
8
),
3814
3822
(
2020
).
20.
M.
Fernandez
,
T. K.
Woo
,
C. E.
Wilmer
, and
R. Q.
Snurr
, “
Large-scale quantitative structure–property relationship (QSPR) analysis of methane storage in metal–organic frameworks
,”
J. Phys. Chem. C
117
(
15
),
7681
7689
(
2013
).
21.
M.
Fernandez
,
N. R.
Trefiak
, and
T. K.
Woo
, “
Atomic property weighted radial distribution functions descriptors of metal–organic frameworks for the prediction of gas uptake capacity
,”
J. Phys. Chem. C
117
(
27
),
14095
14105
(
2013
).
22.
M.
Fernandez
and
A. S.
Barnard
, “
Geometrical properties can predict CO2 and N2 adsorption performance of metal–organic frameworks (MOFs) at low pressure
,”
ACS Comb. Sci.
18
(
5
),
243
252
(
2016
).
23.
T.
Xie
and
J. C.
Grossman
, “
Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties
,”
Phys. Rev. Lett.
120
(
14
),
145301
(
2018
).
24.
Y.
He
,
E. D.
Cubuk
,
M. D.
Allendorf
, and
E. J.
Reed
, “
Metallic metal–organic frameworks predicted by the combination of machine learning methods and ab initio calculations
,”
J. Phys. Chem. Lett.
9
(
16
),
4562
4569
(
2018
).
25.
A. S.
Rosen
,
S. M.
Iyer
,
D.
Ray
,
Z.
Yao
,
A.
Aspuru-Guzik
,
L.
Gagliardi
,
J. M.
Notestein
, and
R. Q.
Snurr
, “
Machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery
,”
Matter
4
,
1578
1597
(
2021
).
26.
Z.
Shi
,
H.
Liang
,
W.
Yang
,
J.
Liu
,
Z.
Liu
, and
Z.
Qiao
, “
Machine learning and in silico discovery of metal-organic frameworks: Methanol as a working fluid in adsorption-driven heat pumps and chillers
,”
Chem. Eng. Sci.
214
,
115430
(
2020
).
27.
M.
Pardakhti
,
E.
Moharreri
,
D.
Wanik
,
S. L.
Suib
, and
R.
Srivastava
, “
Machine learning using combined structural and chemical descriptors for prediction of methane adsorption performance of metal organic frameworks (MOFs)
,”
ACS Comb. Sci.
19
(
10
),
640
645
(
2017
).
28.
W.
Li
,
X.
Xia
, and
S.
Li
, “
Screening of covalent–organic frameworks for adsorption heat pumps
,”
ACS Appl. Mater. Interfaces
12
(
2
),
3265
3273
(
2020
).
29.
H.
Dureckova
,
M.
Krykunov
,
M. Z.
Aghaji
, and
T. K.
Woo
, “
Robust machine learning models for predicting high CO2 working capacity and CO2/H2 selectivity of gas adsorption in metal organic frameworks for precombustion carbon capture
,”
J. Phys. Chem. C
123
(
7
),
4133
4139
(
2019
).
30.
M. F.
de Lange
,
B. L.
van Velzen
,
C. P.
Ottevanger
,
K. J. F. M.
Verouden
,
L.-C.
Lin
,
T. J. H.
Vlugt
,
J.
Gascon
, and
F.
Kapteijn
, “
Metal–organic frameworks in adsorption-driven heat pumps: The potential of alcohols as working fluids
,”
Langmuir
31
(
46
),
12783
12796
(
2015
).
31.
G.
Borboudakis
,
T.
Stergiannakos
,
M.
Frysali
,
E.
Klontzas
,
I.
Tsamardinos
, and
G. E.
Froudakis
, “
Chemically intuited, large-scale screening of MOFs by machine learning techniques
,”
npj Comput. Mater.
3
(
1
),
1
7
(
2017
).
32.
M. Z.
Aghaji
,
M.
Fernandez
,
P. G.
Boyd
,
T. D.
Daff
, and
T. K.
Woo
, “
Quantitative structure–property relationship models for recognizing metal organic frameworks (MOFs) with high CO2 working capacity and CO2/CH4 selectivity for methane purification
,”
Eur. J. Inorg. Chem.
2016
(
27
),
4505
4511
.
33.
R.
Anderson
,
A.
Biong
, and
D. A.
Gómez-Gualdrón
, “
Adsorption isotherm predictions for multiple molecules in MOFs using the same deep learning model
,”
J. Chem. Theory Comput.
16
(
2
),
1271
1283
(
2020
).
34.
B. J.
Bucior
,
N. S.
Bobbitt
,
T.
Islamoglu
,
S.
Goswami
,
A.
Gopalan
,
T.
Yildirim
,
O. K.
Farha
,
N.
Bagheri
, and
R. Q.
Snurr
, “
Energy-based descriptors to rapidly predict hydrogen storage in metal–organic frameworks
,”
Mol. Syst. Des. Eng.
4
(
1
),
162
174
(
2019
).
35.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
, 2nd ed. (
Oxford University Press
,
2017
).
36.
D.
Dubbeldam
,
S.
Calero
,
D. E.
Ellis
, and
R. Q.
Snurr
, “
RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials
,”
Mol. Simul.
42
(
2
),
81
101
(
2016
).
37.
D.-Y.
Peng
and
D. B.
Robinson
, “
A new two-constant equation of state
,”
Ind. Eng. Chem. Fundam.
15
(
1
),
59
64
(
1976
).
38.
A. K.
Rappe
,
C. J.
Casewit
,
K. S.
Colwell
,
W. A.
Goddard
, and
W. M.
Skiff
, “
UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
,”
J. Am. Chem. Soc.
114
(
25
),
10024
10035
(
1992
).
39.
J. O.
Hirschfelder
,
C. F.
Curtiss
,
R. B.
Bird
,
University of Wisconsin
, and
Naval Research Laboratory
,
Molecular Theory of Gases and Liquids
(
Wiley
,
New York
,
1954
).
40.
O.
Talu
and
A. L.
Myers
, “
Reference potentials for adsorption of helium, argon, methane, and krypton in high-silica zeolites
,”
Colloids Surf., A
187-188
,
83
93
(
2001
).
41.
M. G.
Martin
and
J. I.
Siepmann
, “
Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes
,”
J. Phys. Chem. B
102
(
14
),
2569
2577
(
1998
).
42.
T.
van Westen
,
T. J. H.
Vlugt
, and
J.
Gross
, “
Determining force field parameters using a physically based equation of state
,”
J. Phys. Chem. B
115
(
24
),
7872
7880
(
2011
).
43.
F. G.
Kerry
,
Industrial Gas Handbook: Gas Separation and Purification
, 1st ed. (
CRC Press
, 2007).
44.
J. I.
Siepmann
and
D.
Frenkel
, “
Configurational bias Monte Carlo: A new sampling scheme for flexible chains
,”
Mol. Phys.
75
(
1
),
59
70
(
1992
).
45.
R Core Team
, R: A language and environment for statistical computing,
R Foundation for Statistical Computing
,
Vienna, Austria
.
46.
Rstudio Team
, RStudio: Integrated development for R, http://support.rstudio.com; accessed December 15, 2019.
47.
S. K.
Elsaidi
,
M. H.
Mohamed
,
A. S.
Helal
,
M.
Galanek
,
T.
Pham
,
S.
Suepaul
,
B.
Space
,
D.
Hopkinson
,
P. K.
Thallapally
, and
J.
Li
, “
Radiation-resistant metal-organic framework enables efficient separation of krypton fission gas from spent nuclear fuel
,”
Nat. Commun.
11
(
1
),
3103
(
2020
).
48.
B. J.
Sikora
,
C. E.
Wilmer
,
M. L.
Greenfield
, and
R. Q.
Snurr
, “
Thermodynamic analysis of Xe/Kr selectivity in over 137 000 hypothetical metal–organic frameworks
,”
Chem. Sci.
3
(
7
),
2217
2223
(
2012
).
49.
G.
James
,
D.
Witten
,
T.
Hastie
, and
R.
Tibshirani
, “
Tree-based methods
,” in
An Introduction to Statistical Learning: With Applications in R
, Springer Texts in Statistics, edited by
G.
James
,
D.
Witten
,
T.
Hastie
, and
R.
Tibshirani
(
Springer
,
New York, NY
,
2013
), pp.
303
335
.
50.
H.
Frost
,
T.
Düren
, and
R. Q.
Snurr
, “
Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal–organic frameworks
,”
J. Phys. Chem. B
110
(
19
),
9565
9570
(
2006
).
51.
See https://github.com/snurr-group/energygrid for the supporting dataset associated with the present study.

Supplementary Material

You do not currently have access to this content.