Block-localized wave function is a useful method for optimizing constrained determinants. In this article, we extend the generalized block-localized wave function technique to a relativistic two-component framework. Optimization of excited state determinants for two-component wave functions presents a unique challenge because the excited state manifold is often quite dense with degenerate states. Furthermore, we test the degree to which certain symmetries result naturally from the ΔSCF optimization such as time-reversal symmetry and symmetry with respect to the total angular momentum operator on a series of atomic systems. Variational optimizations may often break the symmetry in order to lower the overall energy, just as unrestricted Hartree–Fock breaks spin symmetry. Overall, we demonstrate that time-reversal symmetry is roughly maintained when using Hartree–Fock, but less so when using Kohn–Sham density functional theory. Additionally, maintaining total angular momentum symmetry appears to be system dependent and not guaranteed. Finally, we were able to trace the breaking of total angular momentum symmetry to the relaxation of core electrons.

1.
E. L.
Mehler
, “
Self-consistent, nonorthogonal group function approximation for polyatomic systems. I. Closed shells
,”
J. Chem. Phys.
67
,
2728
2739
(
1977
).
2.
H.
Stoll
,
G.
Wagenblast
, and
H.
Preuβ
, “
On the use of local basis-sets for localized molecular-orbitals
,”
Theor. Chim. Acta
57
,
169
178
(
1980
).
3.
K.
Kitaura
and
K.
Morokuma
, “
A new energy decomposition scheme for molecular interactions within the Hartree–Fock approximation
,”
Int. J. Quantum Chem.
10
,
325
340
(
1976
).
4.
Y.
Mo
,
J.
Gao
, and
S. D.
Peyerimhoff
, “
Energy decomposition analysis of intermolecular interactions using a block-localized wave function approach
,”
J. Chem. Phys.
112
,
5530
5538
(
2000
).
5.
Y.
Mo
and
J.
Gao
, “
Polarization and charge-transfer effects in Lewis acid-base complexes
,”
J. Phys. Chem. A
105
,
6530
6536
(
2001
).
6.
Y.
Mo
,
P.
Bao
, and
J.
Gao
, “
Energy decomposition analysis based on a block-localized wavefunction and multistate density functional theory
,”
Phys. Chem. Chem. Phys.
13
,
6760
6775
(
2011
).
7.
P. R.
Horn
and
M.
Head-Gordon
, “
Polarization contributions to intermolecular interactions revisited with fragment electric-field response functions
,”
J. Chem. Phys.
143
,
114111
(
2015
).
8.
A.
Grofe
,
R.
Zhao
,
A.
Wildman
,
T. F.
Stetina
,
X.
Li
,
P.
Bao
, and
J.
Gao
, “
Generalization of block-localized wave function for constrained optimization of excited determinants
,”
J. Chem. Theory Comput.
17
,
277
289
(
2021
).
9.
P. R.
Horn
,
Y.
Mao
, and
M.
Head-Gordon
, “
Defining the contributions of permanent electrostatics, Pauli repulsion, and dispersion in density functional theory calculations of intermolecular interaction energies
,”
J. Chem. Phys.
144
,
114107
(
2016
).
10.
D. S.
Levine
and
M.
Head-Gordon
, “
Quantifying the role of orbital contraction in chemical bonding
,”
J. Phys. Chem. Lett.
8
,
1967
1972
(
2017
).
11.
M.
Loipersberger
,
Y.
Mao
, and
M.
Head-Gordon
, “
Variational forward–backward charge transfer analysis based on absolutely localized molecular orbitals: Energetics and molecular properties
,”
J. Chem. Theory Comput.
16
,
1073
1089
(
2020
).
12.
P.
Bao
,
C. P.
Hettich
,
Q.
Shi
, and
J.
Gao
, “
Block-localized excitation for excimer complex and diabatic coupling
,”
J. Chem. Theory Comput.
17
,
240
254
(
2021
).
13.
Y.
Mo
and
J.
Gao
, “
Ab initio QM/MM simulations with a molecular orbital-valence bond (MOVB) method: Application to an SN2 reaction in water
,”
J. Comput. Chem.
21
,
1458
1469
(
2000
).
14.
J.
Gao
,
A.
Grofe
,
H.
Ren
, and
P.
Bao
, “
Beyond Kohn–Sham approximation: Hybrid multistate wave function and density functional theory
,”
J. Phys. Chem. Lett.
7
,
5143
5149
(
2016
).
15.
L.
Song
and
J.
Gao
, “
On the construction of diabatic and adiabatic potential energy surfaces based on ab initio valence bond theory
,”
J. Phys. Chem. A
112
,
12925
12935
(
2008
).
16.
A.
Cembran
,
L.
Song
,
Y.
Mo
, and
J.
Gao
, “
Block-localized density functional theory (BLDFT), diabatic coupling, and their use in valence bond theory for representing reactive potential energy surfaces
,”
J. Chem. Theory Comput.
5
,
2702
2716
(
2009
).
17.
H.
Ren
,
M. R.
Provorse
,
P.
Bao
,
Z.
Qu
, and
J.
Gao
, “
Multistate density functional theory for effective diabatic electronic coupling
,”
J. Phys. Chem. Lett.
7
,
2286
2293
(
2016
).
18.
Y.
Mao
,
A.
Montoya-Castillo
, and
T. E.
Markland
, “
Accurate and efficient DFT-based diabatization for hole and electron transfer using absolutely localized molecular orbitals
,”
J. Chem. Phys.
151
,
164114
(
2019
).
19.
X.
Guo
,
Z.
Qu
, and
J.
Gao
, “
The charger transfer electronic coupling in diabatic perspective: A multi-state density functional theory study
,”
Chem. Phys. Lett.
691
,
91
97
(
2018
).
20.
A.
Cembran
,
M. R.
Provorse
,
C.
Wang
,
W.
Wu
, and
J.
Gao
, “
The third dimension of a More O’Ferrall–Jencks diagram for hydrogen atom transfer in the isoelectronic hydrogen exchange reactions of (PhX)2H· with X = O, NH, and CH2
,”
J. Chem. Theory Comput.
8
,
4347
4358
(
2012
).
21.
L.
Yang
,
X.
Chen
,
Z.
Qu
, and
J.
Gao
, “
Combined multistate and Kohn–Sham density functional theory studies of the elusive mechanism of N-dealkylation of N,N-dimethylanilines mediated by the biomimetic nonheme oxidant FeIV(O)(N4Py)(ClO4)2
,”
Front. Chem.
6
,
406
(
2018
).
22.
X.
Li
,
H.
Ren
,
M.
Kundu
,
Z.
Liu
,
F. W.
Zhong
,
L.
Wang
,
J.
Gao
, and
D.
Zhong
, “
A leap in quantum efficiency through light harvesting in photoreceptor UVR8
,”
Nat. Commun.
11
,
4316
(
2020
).
23.
H.
Li
,
Y.
Wang
,
M.
Ye
,
S.
Li
,
D.
Li
,
H.
Ren
,
M.
Wang
,
L.
Du
,
H.
Li
,
G.
Veglia
,
J.
Gao
, and
Y.
Weng
, “
Dynamical and allosteric regulation of photoprotection in light harvesting complex II
,”
Sci. China: Chem.
63
,
1121
1133
(
2020
).
24.
Y.
Mo
and
J.
Gao
, “
Theoretical analysis of the rotational barrier in ethane
,”
Acc. Chem. Res.
40
,
113
119
(
2007
).
25.
Y.
Mo
and
P. V. R.
Schleyer
, “
An energetic measure of aromaticity and antiaromaticity based on the Pauling–Wheland resonance energies
,”
Chem. - Eur. J.
12
,
2009
2020
(
2006
).
26.
Y.
Mo
, “
Computational evidence that hyperconjugative interactions are not responsible for the anomeric effect
,”
Nat. Chem.
2
,
666
671
(
2010
).
27.
A. T. B.
Gilbert
,
N. A.
Besley
, and
P. M. W.
Gill
, “
Self-consistent field calculations of excited states using the maximum overlap method (MOM)
,”
J. Phys. Chem. A
112
,
13164
13171
(
2008
).
28.
B.
Peng
,
B. E.
van Kuiken
,
F.
Ding
, and
X.
Li
, “
A guided self-consistent-field method for excited state wave function optimization: Applications to ligand field transitions in transition metal complexes
,”
J. Chem. Theory Comput.
9
,
3933
3938
(
2013
).
29.
G. M. J.
Barca
,
A. T. B.
Gilbert
, and
P. M. W.
Gill
, “
Simple models for difficult electronic excitations
,”
J. Chem. Theory Comput.
14
,
1501
1509
(
2018
).
30.
J.
Liu
,
Y.
Zhang
, and
W.
Liu
, “
Photoexcitation of light-harvesting C-P-C60 triads: A FLMO-TD-DFT study
,”
J. Chem. Theory Comput.
10
,
2436
2448
(
2014
).
31.
S.
Grimme
, “
A simplified Tamm–Dancoff density functional approach for the electronic excitation spectra of very large molecules
,”
J. Chem. Phys.
138
,
244104
(
2013
).
32.
A.
Kovyrshin
,
F. D.
Angelis
, and
J.
Neugebauer
, “
Selective TDDFT with automatic removal of ghost transitions: Application to a perylene-dye-sensitized solar cell model
,”
Phys. Chem. Chem. Phys.
14
,
8608
8619
(
2012
).
33.
L.
Jensen
,
J.
Autschbach
, and
G. C.
Schatz
, “
Finite lifetime effects on the polarizability within time-dependent density-functional theory
,”
J. Chem. Phys.
122
,
224115
(
2005
).
34.
W.
Kutzelnigg
and
W.
Liu
, “
Quasirelativistic theory equivalent to fully relativistic theory
,”
J. Chem. Phys.
123
,
241102
(
2005
).
35.
W.
Liu
and
D.
Peng
, “
Infinite-order quasirelativistic density functional method based on the exact matrix quasirelativistic theory
,”
J. Chem. Phys.
125
,
044102
(
2006
).
36.
D.
Peng
,
W.
Liu
,
Y.
Xiao
, and
L.
Cheng
, “
Making four- and two-component relativistic density functional methods fully equivalent based on the idea of from atoms to molecule
,”
J. Chem. Phys.
127
,
104106
(
2007
).
37.
M.
Iliaš
and
T.
Saue
, “
An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation
,”
J. Chem. Phys.
126
,
064102
(
2007
).
38.
W.
Liu
and
D.
Peng
, “
Exact two-component Hamiltonians revisited
,”
J. Chem. Phys.
131
,
031104
(
2009
).
39.
W.
Liu
, “
Ideas of relativistic quantum chemistry
,”
Mol. Phys.
108
,
1679
1706
(
2010
).
40.
T.
Saue
, “
Relativistic Hamiltonians for chemistry: A primer
,”
Chem. Phys. Chem.
12
,
3077
3094
(
2011
).
41.
Z.
Li
,
Y.
Xiao
, and
W.
Liu
, “
On the spin separation of algebraic two-component relativistic Hamiltonians
,”
J. Chem. Phys.
137
,
154114
(
2012
).
42.
D.
Peng
,
N.
Middendorf
,
F.
Weigend
, and
M.
Reiher
, “
An efficient implementation of two-component relativistic exact-decoupling methods for large molecules
,”
J. Chem. Phys.
138
,
184105
(
2013
).
43.
F.
Egidi
,
J. J.
Goings
,
M. J.
Frisch
, and
X.
Li
, “
Direct atomic-orbital-based relativistic two-component linear response method for calculating excited-state fine structures
,”
J. Chem. Theory Comput.
12
,
3711
3718
(
2016
).
44.
J. J.
Goings
,
J. M.
Kasper
,
F.
Egidi
,
S.
Sun
, and
X.
Li
, “
Real time propagation of the exact two component time-dependent density functional theory
,”
J. Chem. Phys.
145
,
104107
(
2016
).
45.
L.
Konecny
,
M.
Kadek
,
S.
Komorovsky
,
O. L.
Malkina
,
K.
Ruud
, and
M.
Repisky
, “
Acceleration of relativistic electron dynamics by means of X2C transformation: Application to the calculation of nonlinear optical properties
,”
J. Chem. Theory Comput.
12
,
5823
5833
(
2016
).
46.
F.
Egidi
,
S.
Sun
,
J. J.
Goings
,
G.
Scalmani
,
M. J.
Frisch
, and
X.
Li
, “
Two-component non-collinear time-dependent spin density functional theory for excited state calculations
,”
J. Chem. Theory Comput.
13
,
2591
2603
(
2017
).
47.
A.
Petrone
,
D. B.
Williams-Young
,
S.
Sun
,
T. F.
Stetina
, and
X.
Li
, “
An efficient implementation of two-component relativistic density functional theory with torque-free auxiliary variables
,”
Eur. Phys. J. B
91
,
169
(
2018
).
48.
W.
Liu
and
Y.
Xiao
, “
Relativistic time-dependent density functional theories
,”
Chem. Soc. Rev.
47
,
4481
4509
(
2018
).
49.
C. E.
Hoyer
,
D. B.
Williams-Young
,
C.
Huang
, and
X.
Li
, “
Embedding non-collinear two-component electronic structure in a collinear quantum environment
,”
J. Chem. Phys.
150
,
174114
(
2019
).
50.
T. F.
Stetina
,
J. M.
Kasper
, and
X.
Li
, “
Modeling L2,3-edge x-ray absorption spectroscopy with linear response exact two-component relativistic time-dependent density functional theory
,”
J. Chem. Phys.
150
,
234103
(
2019
).
51.
H.
Hu
,
A. J.
Jenkins
,
H.
Liu
,
J. M.
Kasper
,
M. J.
Frisch
, and
X.
Li
, “
Relativistic two-component multireference configuration interaction method with tunable correlation space
,”
J. Chem. Theory Comput.
16
,
2975
2984
(
2020
).
52.
T.
Zhang
,
J. M.
Kasper
, and
X.
Li
, “
Chapter two—Localized relativistic two-component methods for ground and excited state calculations
,” in
Annual Reports in Computational Chemistry
, edited by
D. A.
Dixon
(
Elsevier
,
2020
), Vol. 16, pp.
17
37
.
53.
C. E.
Hoyer
and
X.
Li
, “
Relativistic two-component projection-based quantum embedding for open-shell systems
,”
J. Chem. Phys.
153
,
094113
(
2020
).
54.
K. G.
Dyall
and
K.
Fægri
, Jr.
,
Introduction to Relativistic Quantum Chemistry
(
Oxford University Press
,
2007
).
55.
M.
Reiher
and
A.
Wolf
,
Relativistic Quantum Chemistry
, 2nd ed. (
Wiley-VCH
,
2015
).
56.
S.
Sun
,
T. F.
Stetina
,
T.
Zhang
,
H.
Hu
,
E. F.
Valeev
,
Q.
Sun
, and
X.
Li
, “
Efficient four-component Dirac–Coulomb–Gaunt Hartree–Fock in the Pauli spinor representation
,”
J. Chem. Theory Comput.
17
,
3388
3402
(
2021
).
57.
J. C.
Boettger
, “
Approximate two-electron spin–orbit coupling term for density-functional-theory DFT calculations using the Douglas–Kroll–Hess transformation
,”
Phys. Rev. B
62
,
7809
7815
(
2000
).
58.
D. B.
Williams-Young
,
A.
Petrone
,
S.
Sun
,
T. F.
Stetina
,
P.
Lestrange
,
C. E.
Hoyer
,
D. R.
Nascimento
,
L.
Koulias
,
A.
Wildman
,
J.
Kasper
,
J. J.
Goings
,
F.
Ding
,
A. E.
DePrince
 III
,
E. F.
Valeev
, and
X.
Li
, “
The Chronus quantum (ChronusQ) software package
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
10
,
e1436
(
2020
).
59.
X.
Li
,
D.
Williams-Young
,
E. F.
Valeev
,
A.
Petrone
,
S.
Sun
,
T.
Stetina
, and
J.
Kasper
, See http://www.chronusquantum.org for Chronus quantum, beta 2 version,
2018
.
60.
T.
Noro
,
M.
Sekiya
, and
T.
Koga
, “
Segmented contracted basis sets for atoms H through Xe: Sapporo-(DK)-nZP sets (n = D, T, Q)
,”
Theor. Chem. Acc.
131
,
1124
(
2012
).
61.
D. R.
Hartree
and
W.
Hartree
, “
Self-consistent field, with exchange, for beryllium
,”
Proc. R. Soc. A
150
,
9
33
(
1935
).
62.
A. D.
Becke
, “
A new mixing of Hartree–Fock and local density-functional theories
,”
J. Chem. Phys.
98
,
1372
1377
(
1993
).
63.
C.
Adamo
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
6170
(
2001
).
64.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
, “
Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields
,”
J. Phys. Chem.
98
,
11623
11627
(
1994
).
65.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
, “
Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules
,”
J. Chem. Phys.
56
,
2257
2261
(
1972
).
66.
P. C.
Hariharan
and
J. A.
Pople
, “
The influence of polarization functions on molecular orbital hydrogenation energies
,”
Theor. Chem. Acc.
28
,
213
222
(
1973
).
67.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1988
).
68.
J. E.
Sansonetti
, “
Wavelengths, transition probabilities, and energy levels for the spectra of sodium (Na I–Na XI)
,”
J. Phys. Chem. Ref. Data
37
,
1659
1763
(
2008
).
69.
A.
Kramida
,
Y.
Ralchenko
,
J.
Reader
, and
N. A.
Team
, “NIST atomic spectra database (version 5.8),
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2020
.
70.
J. M.
Kasper
,
A. J.
Jenkins
,
S.
Sun
, and
X.
Li
, “
Perspective on Kramers symmetry breaking and restoration in relativistic electronic structure methods for open-shell systems
,”
J. Chem. Phys.
153
,
090903
(
2020
).
71.
P.
Pollak
and
F.
Weigend
, “
Segmented contracted error-consistent basis sets of double- and triple-ζ valence quality for one- and two-component relativistic all-electron calculations
,”
J. Chem. Theory Comput.
13
,
3696
3705
(
2017
).
72.
D.
Peng
,
J.
Ma
, and
W.
Liu
, “
On the construction of Kramers paired double group symmetry functions
,”
Int. J. Quantum Chem.
109
,
2149
2167
(
2009
).
73.
Y.
Zhang
and
W.
Yang
, “
A challenge for density functionals: Self-interaction error increases for systems with a noninteger number of electrons
,”
J. Chem. Phys.
109
,
2604
2608
(
1998
).
74.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
, “
Many-electron self-interaction error in approximate density functionals
,”
J. Chem. Phys.
125
,
201102
(
2006
).
75.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
, “
Challenges for density functional theory
,”
Chem. Rev.
112
,
289
320
(
2012
).
76.
I. Y.
Zhang
and
X.
Xu
, “
On the top rung of Jacob’s ladder of density functional theory: Toward resolving the dilemma of SIE and NCE
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1490
(
2021
).

Supplementary Material

You do not currently have access to this content.