Solid-state electrolyte materials with superior lithium ionic conductivities are vital to the next-generation Li-ion batteries. Molecular dynamics could provide atomic scale information to understand the diffusion process of Li-ion in these superionic conductor materials. Here, we implement the deep potential generator to set up an efficient protocol to automatically generate interatomic potentials for Li10GeP2S12-type solid-state electrolyte materials (Li10GeP2S12, Li10SiP2S12, and Li10SnP2S12). The reliability and accuracy of the fast interatomic potentials are validated. With the potentials, we extend the simulation of the diffusion process to a wide temperature range (300 K–1000 K) and systems with large size (∼1000 atoms). Important technical aspects such as the statistical error and size effect are carefully investigated, and benchmark tests including the effect of density functional, thermal expansion, and configurational disorder are performed. The computed data that consider these factors agree well with the experimental results, and we find that the three structures show different behaviors with respect to configurational disorder. Our work paves the way for further research on computation screening of solid-state electrolyte materials.

1.
J. B.
Goodenough
and
K.-S.
Park
, “
The Li-ion rechargeable battery: A perspective
,”
J. Am. Chem. Soc.
135
,
1167
1176
(
2013
).
2.
J.-M.
Tarascon
and
M.
Armand
, “
Issues and challenges facing rechargeable lithium batteries
,” in
Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group
(
World Scientific
,
2011
), pp.
171
179
.
3.
S.
Chu
and
A.
Majumdar
, “
Opportunities and challenges for a sustainable energy future
,”
Nature
488
,
294
(
2012
).
4.
Y.-S.
Hu
, “
Batteries: Getting solid
,”
Nat. Energy
1
,
16042
(
2016
).
5.
Z.
Zhang
,
Y.
Shao
,
B.
Lotsch
,
Y.-S.
Hu
,
H.
Li
,
J.
Janek
,
L. F.
Nazar
,
C.-W.
Nan
,
J.
Maier
,
M.
Armand
 et al., “
New horizons for inorganic solid state ion conductors
,”
Energy Environ. Sci.
11
,
1945
1976
(
2018
).
6.
N.
Kamaya
,
K.
Homma
,
Y.
Yamakawa
,
M.
Hirayama
,
R.
Kanno
,
M.
Yonemura
,
T.
Kamiyama
,
Y.
Kato
,
S.
Hama
,
K.
Kawamoto
 et al., “
A lithium superionic conductor
,”
Nat. Mater.
10
,
682
(
2011
).
7.
R.
Murugan
,
V.
Thangadurai
, and
W.
Weppner
, “
Fast lithium ion conduction in garnet-type Li7La3Zr2O12
,”
Angew. Chem., Int. Ed.
46
,
7778
7781
(
2007
).
8.
Y.
Seino
,
T.
Ota
,
K.
Takada
,
A.
Hayashi
, and
M.
Tatsumisago
, “
A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries
,”
Energy Environ. Sci.
7
,
627
631
(
2014
).
9.
S. P.
Ong
,
Y.
Mo
,
W. D.
Richards
,
L.
Miara
,
H. S.
Lee
, and
G.
Ceder
, “
Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors
,”
Energy Environ. Sci.
6
,
148
156
(
2013
).
10.
G.
Ceder
,
S. P.
Ong
, and
Y.
Wang
, “
Predictive modeling and design rules for solid electrolytes
,”
MRS Bull.
43
,
746
751
(
2018
).
11.
Y.
Mo
,
S. P.
Ong
, and
G.
Ceder
, “
First principles study of the Li10GeP2S12 lithium super ionic conductor material
,”
Chem. Mater.
24
,
15
17
(
2012
).
12.
R.
Car
and
M.
Parrinello
, “
Unified approach for molecular dynamics and density-functional theory
,”
Phys. Rev. Lett.
55
,
2471
(
1985
).
13.
X.
He
,
Y.
Zhu
, and
Y.
Mo
, “
Origin of fast ion diffusion in super-ionic conductors
,”
Nat. Commun.
8
,
15893
(
2017
).
14.
A. M.
Nolan
,
Y.
Zhu
,
X.
He
,
Q.
Bai
, and
Y.
Mo
, “
Computation-accelerated design of materials and interfaces for all-solid-state lithium-ion batteries
,”
Joule
2
,
2016
(
2018
).
15.
A.
Van der Ven
and
G.
Ceder
, “
Lithium diffusion in layered LixCoO2
,”
Electrochem. Solid-State Lett.
3
,
301
304
(
2000
).
16.
A.
Marcolongo
and
N.
Marzari
, “
Ionic correlations and failure of Nernst-Einstein relation in solid-state electrolytes
,”
Phys. Rev. Mater.
1
,
025402
(
2017
).
17.
A.
Kuhn
,
J.
Köhler
, and
B. V.
Lotsch
, “
Single-crystal X-ray structure analysis of the superionic conductor Li10GeP2S12
,”
Phys. Chem. Chem. Phys.
15
,
11620
(
2013
).
18.
J. B.
Boyce
and
B. A.
Huberman
, “
Superionic conductors: Transitions, structures, dynamics
,”
Phys. Rep.
51
,
189
265
(
1979
).
19.
M.
Tachez
,
J.-P.
Malugani
,
R.
Mercier
, and
G.
Robert
, “
Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4
,”
Solid State Ionics
14
,
181
185
(
1984
).
20.
O.
Kwon
,
M.
Hirayama
,
K.
Suzuki
,
Y.
Kato
,
T.
Saito
,
M.
Yonemura
,
T.
Kamiyama
, and
R.
Kanno
, “
Synthesis, structure, and conduction mechanism of the lithium superionic conductor Li10+δGe1+δP2−δS12
,”
J. Mater. Chem. A
3
,
438
446
(
2015
).
21.
R.
Kanno
and
M.
Murayama
, “
Lithium ionic conductor thio-LISICON: The Li2S-GeS2-P2S5 system
,”
J. Electrochem. Soc.
148
,
A742
A746
(
2001
).
22.
P.
Bron
,
S.
Johansson
,
K.
Zick
,
J.
Schmedt auf der Günne
,
S.
Dehnen
, and
B.
Roling
, “
Li10SnP2S12: An affordable lithium superionic conductor
,”
J. Am. Chem. Soc.
135
,
15694
15697
(
2013
).
23.
X.
He
,
Y.
Zhu
,
A.
Epstein
, and
Y.
Mo
, “
Statistical variances of diffusional properties from ab initio molecular dynamics simulations
,”
npj Comput. Mater.
4
,
18
(
2018
).
24.
R.
Xiao
,
H.
Li
, and
L.
Chen
, “
Candidate structures for inorganic lithium solid-state electrolytes identified by high-throughput bond-valence calculations
,”
J. Materiomics
1
,
325
332
(
2015
).
25.
L.
Kahle
,
A.
Marcolongo
, and
N.
Marzari
, “
Modeling lithium-ion solid-state electrolytes with a pinball model
,”
Phys. Rev. Mater.
2
,
065405
(
2018
).
26.
R.
Kobayashi
,
Y.
Miyaji
,
K.
Nakano
, and
M.
Nakayama
, “
High-throughput production of force-fields for solid-state electrolyte materials
,”
APL Mater.
8
,
081111
(
2020
).
27.
H.-X.
Li
,
X.-Y.
Zhou
,
Y.-C.
Wang
, and
H.
Jiang
, “
Theoretical study of Na+ transport in the solid-state electrolyte Na3OBr based on deep potential molecular dynamics
,”
Inorg. Chem. Front.
8
,
425
(
2020
).
28.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
29.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
, “
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
,”
Phys. Rev. Lett.
104
,
136403
(
2010
).
30.
N.
Artrith
,
A.
Urban
, and
G.
Ceder
, “
Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species
,”
Phys. Rev. B
96
,
014112
(
2017
).
31.
L.
Zhang
,
J.
Han
,
H.
Wang
,
W.
Saidi
,
R.
Car
, and
W.
E
, “
End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems
,” in
Advances in Neural Information Processing Systems
(
Curran Associates, Inc.
,
2018
), Vol. 31, pp.
4436
4446
.
32.
N.
Artrith
,
A.
Urban
, and
G.
Ceder
, “
Constructing first-principles phase diagrams of amorphous LixSi using machine-learning-assisted sampling with an evolutionary algorithm
,”
J. Chem. Phys.
148
,
241711
(
2018
).
33.
V. L.
Deringer
,
C.
Merlet
,
Y.
Hu
,
T. H.
Lee
,
J. A.
Kattirtzi
,
O.
Pecher
,
G.
Csányi
,
S. R.
Elliott
, and
C. P.
Grey
, “
Towards an atomistic understanding of disordered carbon electrode materials
,”
Chem. Commun.
54
,
5988
5991
(
2018
).
34.
S.
Fujikake
,
V. L.
Deringer
,
T. H.
Lee
,
M.
Krynski
,
S. R.
Elliott
, and
G.
Csányi
, “
Gaussian approximation potential modeling of lithium intercalation in carbon nanostructures
,”
J. Chem. Phys.
148
,
241714
(
2018
).
35.
V.
Lacivita
,
N.
Artrith
, and
G.
Ceder
, “
Structural and compositional factors that control the Li-ion conductivity in LiPON electrolytes
,”
Chem. Mater.
30
,
7077
7090
(
2018
).
36.
W.
Li
,
Y.
Ando
,
E.
Minamitani
, and
S.
Watanabe
, “
Study of Li atom diffusion in amorphous Li3PO4 with neural network potential
,”
J. Chem. Phys.
147
,
214106
(
2017
).
37.
Z.
Deng
,
C.
Chen
,
X.-G.
Li
, and
S. P.
Ong
, “
An electrostatic spectral neighbor analysis potential for lithium nitride
,”
npj Comput. Mater.
5
,
75
(
2019
).
38.
A.
Marcolongo
,
T.
Binninger
,
F.
Zipoli
, and
T.
Laino
, “
Simulating diffusion properties of solid-state electrolytes via a neural network potential: Performance and training scheme
,”
ChemSystemsChem
2
,
e1900031
(
2019
).
39.
N.
Bernstein
,
G.
Csányi
, and
V. L.
Deringer
, “
De novo exploration and self-guided learning of potential-energy surfaces
,”
npj Comput Mater
5
,
99
(
2019
).
40.
C.
Nyshadham
,
M.
Rupp
,
B.
Bekker
,
A. V.
Shapeev
,
T.
Mueller
,
C. W.
Rosenbrock
,
G.
Csányi
,
D. W.
Wingate
, and
G. L.
Hart
, “
Machine-learned multi-system surrogate models for materials prediction
,”
npj Comput. Mater.
5
,
51
(
2019
).
41.
V. L.
Deringer
,
D. M.
Proserpio
,
G.
Csányi
, and
C. J.
Pickard
, “
Data-driven learning and prediction of inorganic crystal structures
,”
Faraday Discuss.
211
,
45
59
(
2018
).
42.
B.
Mortazavi
,
E. V.
Podryabinkin
,
I. S.
Novikov
,
S.
Roche
,
T.
Rabczuk
,
X.
Zhuang
, and
A. V.
Shapeev
, “
Efficient machine-learning based interatomic potentials for exploring thermal conductivity in two-dimensional materials
,”
J. Phys.: Mater.
3
,
02LT02
(
2020
).
43.
E. V.
Podryabinkin
,
E. V.
Tikhonov
,
A. V.
Shapeev
, and
A. R.
Oganov
, “
Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning
,”
Phys. Rev. B
99
,
064114
(
2019
).
44.
K.
Gubaev
,
E. V.
Podryabinkin
, and
A. V.
Shapeev
, “
Machine learning of molecular properties: Locality and active learning
,”
J. Chem. Phys.
148
,
241727
(
2018
).
45.
A. R.
Stamminger
,
B.
Ziebarth
,
M.
Mrovec
,
T.
Hammerschmidt
, and
R.
Drautz
, “
Ionic conductivity and its dependence on structural disorder in halogenated argyrodites Li6PS5X (X = Br, Cl, I)
,”
Chem. Mater.
31
,
8673
8678
(
2019
).
46.
S.
Ohno
,
B.
Helm
,
T.
Fuchs
,
G.
Dewald
,
M. A.
Kraft
,
S. P.
Culver
,
A.
Senyshyn
, and
W. G.
Zeier
, “
Further evidence for energy landscape flattening in the superionic argyrodites Li6+xP1–xMxS5I (M = Si, Ge, Sn)
,”
Chem. Mater.
31
,
4936
4944
(
2019
).
47.
L.
Zhou
,
A.
Assoud
,
A.
Shyamsunder
,
A.
Huq
,
Q.
Zhang
,
P.
Hartmann
,
J.
Kulisch
, and
L. F.
Nazar
, “
An entropically stabilized fast-ion conductor: Li3.25[Si0.25P0.75]S4
,”
Chem. Mater.
31
,
7801
7811
(
2019
).
48.
I.
Hanghofer
,
M.
Brinek
,
S. L.
Eisbacher
,
B.
Bitschnau
,
M.
Volck
,
V.
Hennige
,
I.
Hanzu
,
D.
Rettenwander
, and
H. M. R.
Wilkening
, “
Substitutional disorder: Structure and ion dynamics of the argyrodites Li6PS5Cl, Li6PS5Br and Li6PS5I
,”
Phys. Chem. Chem. Phys.
21
,
8489
8507
(
2019
).
49.
L.
Zhang
,
D.-Y.
Lin
,
H.
Wang
,
R.
Car
, and
W.
E
, “
Active learning of uniformly accurate interatomic potentials for materials simulation
,”
Phys. Rev. Mater.
3
,
023804
(
2019
).
50.
Y.
Zhang
,
H.
Wang
,
W.
Chen
,
J.
Zeng
,
L.
Zhang
,
H.
Wang
, and
W.
E
, “
DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models
,”
Comput. Phys. Commun.
253
,
107206
(
2020
).
51.
A.
Jain
,
S. P.
Ong
,
G.
Hautier
,
W.
Chen
,
W. D.
Richards
,
S.
Dacek
,
S.
Cholia
,
D.
Gunter
,
D.
Skinner
,
G.
Ceder
 et al., “
Commentary: The materials project: A materials genome approach to accelerating materials innovation
,”
APL Mater.
1
,
011002
(
2013
).
52.
S. P.
Ong
,
S.
Cholia
,
A.
Jain
,
M.
Brafman
,
D.
Gunter
,
G.
Ceder
, and
K. A.
Persson
, “
The materials application programming interface (API): A simple, flexible and efficient api for materials data based on representational state transfer (REST) principles
,”
Comput. Mater. Sci.
97
,
209
215
(
2015
).
53.
S. P.
Ong
,
W. D.
Richards
,
A.
Jain
,
G.
Hautier
,
M.
Kocher
,
S.
Cholia
,
D.
Gunter
,
V. L.
Chevrier
,
K. A.
Persson
, and
G.
Ceder
, “
Python materials genomics (pymatgen): A robust, open-source python library for materials analysis
,”
Comput. Mater. Sci.
68
,
314
319
(
2013
).
54.
H.
Wang
,
L.
Zhang
,
J.
Han
, and
W.
E
, “
DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
,”
Comput. Phys. Commun.
228
,
178
184
(
2018
).
55.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
(
1994
).
56.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
57.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
(
1999
).
58.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
59.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
60.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
O. A.
Vydrov
,
G. E.
Scuseria
,
L. A.
Constantin
,
X.
Zhou
, and
K.
Burke
, “
Restoring the density-gradient expansion for exchange in solids and surfaces
,”
Phys. Rev. Lett.
100
,
136406
(
2008
).
61.
J.
Sun
,
R. C.
Remsing
,
Y.
Zhang
,
Z.
Sun
,
A.
Ruzsinszky
,
H.
Peng
,
Z.
Yang
,
A.
Paul
,
U.
Waghmare
,
X.
Wu
 et al., “
SCAN: An efficient density functional yielding accurate structures and energies of diversely-bonded materials
,” arXiv:1511.01089 (
2015
).
62.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
, “
Rationale for mixing exact exchange with density functional approximations
,”
J. Chem. Phys.
105
,
9982
9985
(
1996
).
63.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
6170
(
1999
).
64.
A.
Kuhn
,
V.
Duppel
, and
B. V.
Lotsch
, “
Tetragonal Li10GeP2S12 and Li7GePS8–exploring the Li ion dynamics in LGPS Li electrolytes
,”
Energy Environ. Sci.
6
,
3548
3552
(
2013
).
65.
J. M.
Whiteley
,
J. H.
Woo
,
E.
Hu
,
K.-W.
Nam
, and
S.-H.
Lee
, “
Empowering the lithium metal battery through a silicon-based superionic conductor
,”
J. Electrochem. Soc.
161
,
A1812
A1817
(
2014
).
66.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
67.
D. A.
Weber
,
A.
Senyshyn
,
K. S.
Weldert
,
S.
Wenzel
,
W.
Zhang
,
R.
Kaiser
,
S.
Berendts
,
J.
Janek
, and
W. G.
Zeier
, “
Structural insights and 3D diffusion pathways within the lithium superionic conductor Li10GeP2S12
,”
Chem. Mater.
28
,
5905
5915
(
2016
).
68.
I.-C.
Yeh
and
G.
Hummer
, “
System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions
,”
J. Phys. Chem. B
108
,
15873
15879
(
2004
).
69.
J. C.
Bachman
,
S.
Muy
,
A.
Grimaud
,
H.-H.
Chang
,
N.
Pour
,
S. F.
Lux
,
O.
Paschos
,
F.
Maglia
,
S.
Lupart
,
P.
Lamp
,
L.
Giordano
, and
Y.
Shao-Horn
, “
Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction
,”
Chem. Rev.
116
,
140
162
(
2016
).
70.
W.
Fitzhugh
,
L.
Ye
, and
X.
Li
, “
The effects of mechanical constriction on the operation of sulfide based solid-state batteries
,”
J. Mater. Chem. A
7
,
23604
23627
(
2019
).
71.
S.
Ohno
,
T.
Bernges
,
J.
Buchheim
,
M.
Duchardt
,
A.-K.
Hatz
,
M. A.
Kraft
,
H.
Kwak
,
A. L.
Santhosha
,
Z.
Liu
,
N.
Minafra
,
F.
Tsuji
,
A.
Sakuda
,
R.
Schlem
,
S.
Xiong
,
Z.
Zhang
,
P.
Adelhelm
,
H.
Chen
,
A.
Hayashi
,
Y. S.
Jung
,
B. V.
Lotsch
,
B.
Roling
,
N. M.
Vargas-Barbosa
, and
W. G.
Zeier
, “
How certain are the reported ionic conductivities of thiophosphate-based solid electrolytes? An interlaboratory study
,”
ACS Energy Lett.
5
,
910
915
(
2020
).
72.
G.
Murch
, “
The Haven ratio in fast ionic conductors
,”
Solid State Ionics
7
,
177
198
(
1982
).
73.
A. P.
Bartók
,
R.
Kondor
, and
G.
Csányi
, “
On representing chemical environments
,”
Phys. Rev. B
87
,
184115
(
2013
).
74.
N.
Bernstein
,
B.
Bhattarai
,
G.
Csányi
,
D. A.
Drabold
,
S. R.
Elliott
, and
V. L.
Deringer
, “
Quantifying chemical structure and machine-learned atomic energies in amorphous and liquid silicon
,”
Angew. Chem.
131
,
7131
7135
(
2019
).
75.
Y.
Kato
,
S.
Hori
,
T.
Saito
,
K.
Suzuki
,
M.
Hirayama
,
A.
Mitsui
,
M.
Yonemura
,
H.
Iba
, and
R.
Kanno
, “
High-power all-solid-state batteries using sulfide superionic conductors
,”
Nat. Energy
1
,
16030
(
2016
).
76.
T.
Xie
,
A.
France-Lanord
,
Y.
Wang
,
Y.
Shao-Horn
, and
J. C.
Grossman
, “
Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
,”
Nat. Commun.
10
,
2667
(
2019
).
77.
Y.
Deng
,
C.
Eames
,
J.-N.
Chotard
,
F.
Lalère
,
V.
Seznec
,
S.
Emge
,
O.
Pecher
,
C. P.
Grey
,
C.
Masquelier
, and
M. S.
Islam
, “
Structural and mechanistic insights into fast lithium-ion conduction in Li4SiO4–Li3PO4 solid electrolytes
,”
J. Am. Chem. Soc.
137
,
9136
9145
(
2015
).
78.
L.
Kahle
,
A.
Musaelian
,
N.
Marzari
, and
B.
Kozinsky
, “
Unsupervised landmark analysis for jump detection in molecular dynamics simulations
,”
Phys. Rev. Mater.
3
,
055404
(
2019
).
79.
S.
Muy
,
J. C.
Bachman
,
H.-H.
Chang
,
L.
Giordano
,
F.
Maglia
,
S.
Lupart
,
P.
Lamp
,
W. G.
Zeier
, and
Y.
Shao-Horn
, “
Lithium conductivity and Meyer-Neldel rule in Li3PO4–Li3VO4–Li4GeO4 lithium superionic conductors
,”
Chem. Mater.
30
,
5573
5582
(
2018
).
80.
R. P.
Rao
,
N.
Sharma
,
V. K.
Peterson
, and
S.
Adams
, “
Formation and conductivity studies of lithium argyrodite solid electrolytes using in-situ neutron diffraction
,”
Solid State Ionics
230
,
72
76
(
2013
).
81.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2014
).
82.
L.
Zhang
,
J.
Han
,
H.
Wang
,
R.
Car
, and
W.
E
, “
Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics
,”
Phys. Rev. Lett.
120
,
143001
(
2018
).
83.
S.
Hori
,
S.
Taminato
,
K.
Suzuki
,
M.
Hirayama
,
Y.
Kato
, and
R.
Kanno
, “
Structure–property relationships in lithium superionic conductors having a Li10GeP2S12 -type structure
,”
Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.
71
,
727
736
(
2015
).
84.
S.
Hori
,
M.
Kato
,
K.
Suzuki
,
M.
Hirayama
,
Y.
Kato
, and
R.
Kanno
, “
Phase diagram of the Li4GeS4-Li3PS4 quasi-binary system containing the superionic conductor Li10GeP2S12
,”
J. Am. Ceram. Soc.
98
,
3352
3360
(
2015
).
85.
C. H.
Hu
,
Z. Q.
Wang
,
Z. Y.
Sun
, and
C. Y.
Ouyang
, “
Insights into structural stability and Li superionic conductivity of Li10GeP2S12 from first-principles calculations
,”
Chem. Phys. Lett.
591
,
16
20
(
2014
).
86.
X.
Liang
,
L.
Wang
,
Y.
Jiang
,
J.
Wang
,
H.
Luo
,
C.
Liu
, and
J.
Feng
, “
In-channel and in-plane Li ion diffusions in the superionic conductor Li10GeP2S12 probed by solid-state NMR
,”
Chem. Mater.
27
,
5503
5510
(
2015
).
87.
J. P.
Perdew
,
S.
Kurth
,
A. c. v.
Zupan
, and
P.
Blaha
, “
Accurate density functional with correct formal properties: A step beyond the generalized gradient approximation
,”
Phys. Rev. Lett.
82
,
2544
2547
(
1999
).
88.
A.
Kuhn
,
O.
Gerbig
,
C.
Zhu
,
F.
Falkenberg
,
J.
Maier
, and
B. V.
Lotsch
, “
A new ultrafast superionic Li-conductor: Ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes
,”
Phys. Chem. Chem. Phys.
16
,
14669
14674
(
2014
).
89.
Z. Q.
Wang
,
M. S.
Wu
,
G.
Liu
,
X. L.
Lei
,
B.
Xu
, and
C. Y.
Ouyang
, “
Elastic properties of new solid state electrolyte material Li10GeP2S12: A study from first-principles calculations
,”
Int. J. Electrochem. Sci.
9
,
562
568
(
2014
); available at http://www.electrochemsci.org/list14.htm.
90.
J.
Klimeš
,
D. R.
Bowler
, and
A.
Michaelides
, “
Chemical accuracy for the van der Waals density functional
,”
J. Phys.: Condens. Matter
22
,
022201
(
2009
).
91.
S.
Hori
,
K.
Suzuki
,
M.
Hirayama
,
Y.
Kato
,
T.
Saito
,
M.
Yonemura
, and
R.
Kanno
, “
Synthesis, structure, and ionic conductivity of solid solution, Li10+δM1+δP2−δS12 (M = Si, Sn)
,”
Faraday Discuss.
176
,
83
94
(
2015
).
You do not currently have access to this content.