Molecular Dynamics (MD) simulations are uniquely suitable for providing molecular-level insights into the Electric Double Layer (EDL) that forms when a charged surface is in contact with an aqueous solution. However, simulations are only as accurate in predicting EDL properties as permitted by the atomic interaction models. Experimental ζ-potential values and surface charges could provide a potentially suitable reference to validate and tune the interaction models, if not for the fact that they themselves are a product of imperfect models used to interpret the raw measurement data. Here, we present an approach to tune an interaction model by comparing Electro-Osmotic Flow (EOF) MD simulations against experimental Streaming Current (SC) measurements while minimizing potential modeling errors arising from both approaches. The point that is least susceptible to interpretation and modeling errors is argued to be at the concentration for which zero flow velocity is observed in EOF simulations and a net zero electric current is measured in SC experiments. At this concentration, the ζ-potential is also zero. We were able to match the experimental concentration at which ζ = 0 in MD simulations for a CaCl2 solution at pH 7.5 in contact with fused silica by tuning the ion-surface Lennard-Jones cross interactions. These interactions were found to greatly affect the ion distribution within the EDL and particularly the formation of inner-sphere surface-complexes, which, in turn, affects the electrokinetic flow. With the ion distribution determined explicitly, a series of properties can be calculated unambiguously, such as the capacitance needed for surface complexation models.

1.
M. H.
Badizad
,
M. M.
Koleini
,
R.
Hartkamp
,
S.
Ayatollahi
, and
M. H.
Ghazanfari
,
J. Colloid Interface Sci.
575
,
337
(
2020
).
2.
B.
Jeon
,
S. K. R. S.
Sankaranarayanan
,
A. C. T.
van Duin
, and
S.
Ramanathan
,
J. Chem. Phys.
134
,
234706
(
2011
).
3.
B. M.
Lowe
,
Y.
Maekawa
,
Y.
Shibuta
,
T.
Sakata
,
C.-K.
Skylaris
, and
N. G.
Green
,
Phys. Chem. Chem. Phys.
19
,
2687
(
2017
).
4.
D.
Bohra
,
J. H.
Chaudhry
,
T.
Burdyny
,
E. A.
Pidko
, and
W. A.
Smith
,
Energy Environ. Sci.
12
,
3380
(
2019
).
5.
J.
Lyklema
,
Fundamentals of Interface and Colloid Science: Soft Colloids
(
Elsevier
,
2005
), Vol. 5.
6.
R.
Sivakumarasamy
,
R.
Hartkamp
,
B.
Siboulet
,
J.-F.
Dufrêche
,
K.
Nishiguchi
,
A.
Fujiwara
, and
N.
Clément
,
Nat. Mater.
17
,
464
(
2018
).
7.
J.
Lützenkirchen
,
T.
Preočanin
,
D.
Kovačević
,
V.
Tomišić
,
L.
Lövgren
, and
N.
Kallay
,
Croat. Chem. Acta
85
,
391
(
2012
).
8.
I.
Siretanu
,
D.
Ebeling
,
M. P.
Andersson
,
S. S.
Stipp
,
A.
Philipse
,
M. C.
Stuart
,
D.
van den Ende
, and
F.
Mugele
,
Sci. Rep.
4
,
4956
(
2014
).
9.
F. H. J.
van der Heyden
,
D.
Stein
,
K.
Besteman
,
S. G.
Lemay
, and
C.
Dekker
,
Phys. Rev. Lett.
96
,
224502
(
2006
).
10.
T.
Lagström
,
T. A.
Gmür
,
L.
Quaroni
,
A.
Goel
, and
M. A.
Brown
,
Langmuir
31
,
3621
(
2015
).
11.
Z.
Zhang
,
P.
Fenter
,
L.
Cheng
,
N. C.
Sturchio
,
M. J.
Bedzyk
,
M.
Předota
,
A.
Bandura
,
J. D.
Kubicki
,
S. N.
Lvov
,
P. T.
Cummings
,
A. A.
Chialvo
,
M. K.
Ridley
,
P.
Bénézeth
,
L.
Anovitz
,
D. A.
Palmer
,
M. L.
Machesky
, and
D. J.
Wesolowski
,
Langmuir
20
,
4954
(
2004
).
12.
M. S.
Azam
,
A.
Darlington
, and
J. M.
Gibbs-Davis
,
J. Phys.: Condens. Matter
26
,
244107
(
2014
).
13.
J.
Lützenkirchen
,
T.
Scharnweber
,
T.
Ho
,
A.
Striolo
,
M.
Sulpizi
, and
A.
Abdelmonem
,
J. Colloid Interface Sci.
529
,
294
(
2018
).
14.
O.
Theodoly
,
L.
Cascão-Pereira
,
V.
Bergeron
, and
C. J.
Radke
,
Langmuir
21
,
10127
(
2005
).
15.
P.
Leroy
,
N.
Devau
,
A.
Revil
, and
M.
Bizi
,
J. Colloid Interface Sci.
410
,
81
(
2013
).
16.
T. A.
Gmür
,
A.
Goel
, and
M. A.
Brown
,
J. Phys. Chem. C
120
,
16617
(
2016
).
17.
A. V.
Delgado
,
F.
González-Caballero
,
R. J.
Hunter
,
L. K.
Koopal
, and
J.
Lyklema
,
J. Colloid Interface Sci.
309
,
194
(
2007
), part of special issue on: elkin 06, International Electrokinetics Conference, June 25–29, Nancy, France.
18.
S.
Li
,
P.
Leroy
,
F.
Heberling
,
N.
Devau
,
D.
Jougnot
, and
C.
Chiaberge
,
J. Colloid Interface Sci.
468
,
262
(
2016
).
19.
A.
Szymczyk
,
P.
Fievet
,
M.
Mullet
,
J. C.
Reggiani
, and
J.
Pagetti
,
J. Membr. Sci.
143
,
189
(
1998
).
20.
G.
Hurwitz
,
G. R.
Guillen
, and
E. M. V.
Hoek
,
J. Membr. Sci.
349
,
349
(
2010
).
21.
Z.
Brkljača
,
D.
Namjesnik
,
J.
Lützenkirchen
,
M.
Předota
, and
T.
Preočanin
,
J. Phys. Chem. C
122
,
24025
(
2018
).
22.
A. M.
Darlington
,
T. A.
Jarisz
,
E. L.
DeWalt-Kerian
,
S.
Roy
,
S.
Kim
,
M. S.
Azam
,
D. K.
Hore
, and
J. M.
Gibbs
,
J. Phys. Chem. C
121
,
20229
(
2017
).
23.
M. M.
Sartin
,
W.
Sung
,
S.
Nihonyanagi
, and
T.
Tahara
,
J. Chem. Phys.
149
,
024703
(
2018
).
24.
R.
Hartkamp
,
A.-L.
Biance
,
L.
Fu
,
J.-F.
Dufrêche
,
O.
Bonhomme
, and
L.
Joly
,
Curr. Opin. Colloid Interface Sci.
37
,
101
(
2018
).
25.
C. D.
Lorenz
and
A.
Travesset
,
Phys. Rev. E
75
,
061202
(
2007
).
26.
C. D.
Lorenz
,
P. S.
Crozier
,
J. A.
Anderson
, and
A.
Travesset
,
J. Phys. Chem. C
112
,
10222
(
2008
).
27.
H.
Zhang
,
A. A.
Hassanali
,
Y. K.
Shin
,
C.
Knight
, and
S. J.
Singer
,
J. Chem. Phys.
134
,
024705
(
2011
).
28.
N. R.
Haria
and
C. D.
Lorenz
,
Phys. Chem. Chem. Phys.
14
,
5935
(
2012
).
29.
S.
Dewan
,
V.
Carnevale
,
A.
Bankura
,
A.
Eftekhari-Bafrooei
,
G.
Fiorin
,
M. L.
Klein
, and
E.
Borguet
,
Langmuir
30
,
8056
(
2014
).
30.
N. R.
Haria
and
C. D.
Lorenz
,
J. Phys. Chem. C
119
,
12298
(
2015
).
31.
R.
Hartkamp
,
B.
Siboulet
,
J.-F.
Dufrêche
, and
B.
Coasne
,
Phys. Chem. Chem. Phys.
17
,
24683
(
2015
).
32.
S.
Hocine
,
R.
Hartkamp
,
B.
Siboulet
,
M.
Duvail
,
B.
Coasne
,
P.
Turq
, and
J.-F.
Dufrêche
,
J. Phys. Chem. C
120
,
963
(
2016
).
33.
S.
Prakash
,
H. A.
Zambrano
,
K. K.
Rangharajan
,
E.
Rosenthal-Kim
,
N.
Vasquez
, and
A. T.
Conlisk
,
Microfluid. Nanofluid.
20
,
8
(
2016
).
34.
B.
Siboulet
,
S.
Hocine
,
R.
Hartkamp
, and
J.-F.
Dufrêche
,
J. Phys. Chem. C
121
,
6756
(
2017
).
35.
M. F.
Döpke
,
J.
Lützenkirchen
,
O. A.
Moultos
,
B.
Siboulet
,
J.-F.
Dufrêche
,
J. T.
Padding
, and
R.
Hartkamp
,
J. Phys. Chem. C
123
,
16711
(
2019
).
36.
D.
Biriukov
,
P.
Fibich
, and
M.
Předota
,
J. Phys. Chem. C
124
,
3159
(
2020
).
37.
R. M.
Venable
,
Y.
Luo
,
K.
Gawrisch
,
B.
Roux
, and
R. W.
Pastor
,
J. Phys. Chem. B
117
,
10183
(
2013
).
38.
D.
Biriukov
,
O.
Kroutil
, and
M.
Předota
,
Phys. Chem. Chem. Phys.
20
,
23954
(
2018
).
39.
I.
Leontyev
and
A.
Stuchebrukhov
,
Phys. Chem. Chem. Phys.
13
,
2613
(
2011
).
40.
I. M.
Zeron
,
J. L. F.
Abascal
, and
C.
Vega
,
J. Chem. Phys.
151
,
134504
(
2019
).
41.
E.
Duboué-Dijon
,
M.
Javanainen
,
P.
Delcroix
,
P.
Jungwirth
, and
H.
Martinez-Seara
,
J. Chem. Phys.
153
,
050901
(
2020
).
42.
K.
Szymanek
,
R.
Charmas
, and
W.
Piasecki
,
Chemosphere
242
,
125162
(
2020
).
43.
A.
Yaroshchuk
and
V.
Ribitsch
,
Langmuir
18
,
2036
(
2002
).
44.
D.
Lis
,
E. H. G.
Backus
,
J.
Hunger
,
S. H.
Parekh
, and
M.
Bonn
,
Science
344
,
1138
(
2014
).
45.
B. L.
Werkhoven
,
J. C.
Everts
,
S.
Samin
, and
R.
van Roij
,
Phys. Rev. Lett.
120
,
264502
(
2018
).
46.
B. W. H.
van Beest
,
G. J.
Kramer
, and
R. A.
van Santen
,
Phys. Rev. Lett.
64
,
1955
(
1990
).
47.
F. S.
Emami
,
V.
Puddu
,
R. J.
Berry
,
V.
Varshney
,
S. V.
Patwardhan
,
C. C.
Perry
, and
H.
Heinz
,
Chem. Mater.
26
,
2647
(
2014
).
48.
J. L. F.
Abascal
and
C.
Vega
,
J. Chem. Phys.
123
,
234505
(
2005
).
49.
A.
Riese
, “
Adsorption of radium and thorium onto quartz and kaolinite: A comparison of solution/surface equilibria models
,” Ph.D. thesis,
Colorado School of Mines
,
Boulder, CO
,
1982
.
50.
M.
Karlsson
,
C.
Craven
,
P. M.
Dove
, and
W. H.
Casey
,
Aquat. Geochem.
7
,
13
(
2001
).
51.
A. T.
Celebi
and
A.
Beskok
,
J. Phys. Chem. C
122
,
9699
(
2018
).
52.
A. T.
Celebi
,
B.
Cetin
, and
A.
Beskok
,
J. Phys. Chem. C
123
,
14024
(
2019
).
53.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
54.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
Hilger
,
1989
).
55.
J.-P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
56.
I.-C.
Yeh
and
M. L.
Berkowitz
,
J. Chem. Phys.
111
,
3155
(
1999
).
57.
H. A.
Lorentz
,
Ann. Phys.
248
,
127
(
1881
).
58.
S.
ben Jabrallah
,
F.
Malloggi
,
L.
Belloni
,
L.
Girard
,
D.
Novikov
,
C.
Mocuta
,
D.
Thiaudière
, and
J.
Daillant
,
Phys. Chem. Chem. Phys.
19
,
167
(
2017
).
59.
I. C.
Bourg
and
G.
Sposito
,
J. Colloid Interface Sci.
360
,
701
(
2011
).
60.
M.
Rashwan
,
B.
Rehl
,
A.
Sthoer
,
A.
Darlington
,
M. S.
Azam
,
H.
Zeng
,
Q.
Liu
,
E.
Tyrode
, and
J.
Gibbs
,
J. Phys. Chem. C
124
,
26973
(
2020
).
61.
A.
Zaragoza
,
M. A.
Gonzalez
,
L.
Joly
,
I.
López-Montero
,
M. A.
Canales
,
A. L.
Benavides
, and
C.
Valeriani
,
Phys. Chem. Chem. Phys.
21
,
13653
(
2019
).
62.
W.-L.
Hsu
,
H.
Daiguji
,
D. E.
Dunstan
,
M. R.
Davidson
, and
D. J. E.
Harvie
,
Adv. Colloid Interface Sci.
234
,
108
(
2016
).
63.
W.-L.
Hsu
,
D. J. E.
Harvie
,
M. R.
Davidson
,
D. E.
Dunstan
,
J.
Hwang
, and
H.
Daiguji
,
J. Phys. Chem. C
121
,
20517
(
2017
).
64.
M.
Rezaei
,
A. R.
Azimian
,
A. R.
Pishevar
, and
D. J.
Bonthuis
,
Phys. Chem. Chem. Phys.
20
,
22517
(
2018
).
65.
F.
Liu
,
A.
Klaassen
,
C.
Zhao
,
F.
Mugele
, and
D.
van den Ende
,
J. Phys. Chem. B
122
,
933
(
2018
).
66.
M. F.
Döpke
,
O. A.
Moultos
, and
R.
Hartkamp
,
J. Chem. Phys.
152
,
024501
(
2020
).
67.
M.
Laliberté
and
W. E.
Cooper
,
J. Chem. Eng. Data
49
,
1141
(
2004
).
68.
M.
Laliberté
,
J. Chem. Eng. Data
54
,
1725
(
2009
).
69.
Y.
Marcus
,
Ion Properties
(
CRC Press
,
1997
).
70.
D. C.
Grahame
,
Chem. Rev.
41
,
441
(
1947
).
71.
H.
Butt
,
K.
Graf
, and
M.
Kappl
,
Physics and Chemistry of Interfaces
(
John Wiley & Sons
,
2006
).
72.
L.
Boltzmann
,
Wiss. Abh.
1
,
49
(
1868
).
73.
J.
Lutzenkirchen
,
Surface Complexation Modelling
(
Elsevier
,
2006
).
74.
R. J.
Hunter
,
Zeta Potential in Colloid Science: Principles and Applications
(
Academic Press
,
2013
), Vol. 2.
75.
W.
Sutherland
,
London, Edinburgh Dublin Philos. Mag. J. Sci.
9
,
781
(
1905
).
76.
A.
Einstein
,
Ann. Phys.
322
,
549
(
1905
).
77.
C. F.
Zukoski
and
D. A.
Saville
,
J. Colloid Interface Sci.
107
,
322
(
1985
).
78.
J.
Lyklema
,
Colloids Surf., A
92
,
41
(
1994
), Part of special issue on: A Collection of Papers Presented at the International Symposium on Elektrokinetic Phenomena ’93.
79.
S. S.
Dukhin
,
Adv. Colloid Interface Sci.
61
,
17
(
1995
).
80.
S. S.
Dukhin
,
R.
Zimmermann
, and
C.
Werner
,
Colloids Surf., A
195
,
103
(
2001
).
81.
F. J.
Rubio-Hernández
,
F.
Carrique
, and
E.
Ruiz-Reina
,
Adv. Colloid Interface Sci.
107
,
51
(
2004
).

Supplementary Material

You do not currently have access to this content.