Deep eutectic solvents show great potential as CO2 absorbents, which is highly desirable for the sustainable development of CO2 reduction and prevention of global climate changes. Ab initio molecular dynamics simulations in the isothermal–isobaric ensemble at pressures of 1 MPa and 5 MPa and at the corresponding experimental density are carried out to investigate the CO2 absorption in choline chloride: ethylene glycol deep eutectic solvent. Based on the structural analysis, there is a strong anion and hydrogen bond donor effect and a minor cation effect on CO2 solvation in the solvent. Instead of cooperation, a competition between the anion and the hydrogen bond donor (ethylene glycol) for the interaction with CO2 is indicated. While at a lower pressure, the ethylene glycol–CO2 interaction dominates, at a higher pressure, it is the chloride–CO2 interaction. Thus, it is possible to use the same advantages within the deep eutectic solvent as the CO2 absorbent as in ionic liquids, but in the hydrogen bond, a donor can be exploited.

1.
E. L.
Smith
,
A. P.
Abbott
, and
K. S.
Ryder
, “
Deep eutectic solvents (DESs) and their applications
,”
Chem. Rev.
114
,
11060
11082
(
2014
).
2.
D. O.
Abranches
,
M. A. R.
Martins
,
L. P.
Silva
,
N.
Schaeffer
,
S. P.
Pinho
, and
J. A. P.
Coutinho
, “
Phenolic hydrogen bond donors in the formation of non-ionic deep eutectic solvents: The quest for type V DES
,”
Chem. Commun.
55
,
10253
10256
(
2019
).
3.
Y.
Dimitrova
and
S. D.
Peyerimhoff
, “
Theoretical study of hydrogen-bonded formaldehyde complexes
,”
Z. Phys. D: At., Mol. Clusters
32
,
241
247
(
1994
).
4.
Y.
Dimitrova
and
S. D.
Peyerimhoff
, “
Theoretical study of the n → π* transitions in hydrogen-bonded formaldehyde complexes
,”
Chem. Phys. Lett.
227
,
384
389
(
1994
).
5.
E. O.
Fetisov
,
D. B.
Harwood
,
I.-F. W.
Kuo
,
S. E. E.
Warrag
,
M. C.
Kroon
,
C. J.
Peters
, and
J. I.
Siepmann
, “
First-principles molecular dynamics study of a deep eutectic solvent: Choline chloride/urea and its mixture with water
,”
J. Phys. Chem. B
122
,
1245
1254
(
2018
).
6.
J. D.
Gamarra
,
K.
Marcoen
,
A.
Hubin
, and
T.
Hauffman
, “
Electrode-electrolyte interactions in choline chloride ethylene glycol based solvents and their effect on the electrodeposition of iron
,”
Electrochim. Acta
312
,
303
312
(
2019
).
7.
G. R. T.
Jenkin
,
A. Z. M.
Al-Bassam
,
R. C.
Harris
,
A. P.
Abbott
,
D. J.
Smith
,
D. A.
Holwell
,
R. J.
Chapman
, and
C. J.
Stanley
, “
The application of deep eutectic solvent ionic liquids for environmentally-friendly dissolution and recovery of precious metals
,”
Miner. Eng.
87
,
18
24
(
2016
).
8.
F.
Himeur
,
I.
Stein
,
D. S.
Wragg
,
A. M. Z.
Slawin
,
P.
Lightfoot
, and
R. E.
Morris
, “
The ionothermal synthesis of metal organic frameworks, Ln (C9O6H3)((CH3NH)2CO)2, using deep eutectic solvents
,”
Solid State Sci.
12
,
418
421
(
2010
).
9.
A.
Satlewal
,
R.
Agrawal
,
S.
Bhagia
,
J.
Sangoro
, and
A. J.
Ragauskas
, “
Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities
,”
Biotechnol. Adv.
36
,
2032
(
2018
).
10.
K. H.
Kim
,
T.
Dutta
,
J.
Sun
,
B.
Simmons
, and
S.
Singh
, “
Biomass pretreatment using deep eutectic solvents from lignin derived phenols
,”
Green Chem.
20
,
809
815
(
2018
).
11.
C. G.
Hanke
,
N. A.
Atamas
, and
R. M.
Lynden-Bell
, “
Solvation of small molecules in imidazolium ionic liquids: A simulation study
,”
Green Chem.
4
,
107
111
(
2002
).
12.
S.
Sarmad
,
J.-P.
Mikkola
, and
X.
Ji
, “
Carbon dioxide capture with ionic liquids and deep eutectic solvents: A new generation of sorbents
,”
ChemSusChem
10
,
324
352
(
2017
).
13.
S.
Babamohammadi
,
A.
Shamiri
, and
M. K.
Aroua
, “
A review of CO2 capture by absorption in ionic liquid-based solvents
,”
Rev. Chem. Eng.
31
,
383
412
(
2015
).
14.
K.
Mulia
,
S.
Putri
,
E.
Krisanti
, and
Nasruddin
, “
Natural deep eutectic solvents (NADES) as green solvents for carbon dioxide capture
,”
AIP Conf. Proc.
1823
,
020022
(
2017
).
15.
L.
Moura
,
L.
Kollau
, and
M. C.
Gomes
,
Deep Eutectic Solvents for Medicine, Gas Solubilization and Extraction of Natural Substances
(
Springer
,
2021
), pp.
131
155
.
16.
R. M.
Lynden-Bell
,
M. G.
Del Pópolo
,
T. G. A.
Youngs
,
J.
Kohanoff
,
C. G.
Hanke
,
J. B.
Harper
, and
C. C.
Pinilla
, “
Simulations of ionic liquids, solutions, and surfaces
,”
Acc. Chem. Res.
40
,
1138
1145
(
2007
).
17.
D. S.
Firaha
,
O.
Hollóczki
, and
B.
Kirchner
, “
Computer-aided design of ionic liquids as CO2 absorbents
,”
Angew. Chem., Int. Ed.
54
,
7805
7809
(
2015
).
18.
D. S.
Firaha
,
O.
Hollóczki
, and
B.
Kirchner
, “
Computer-gestütztes design ionischer flüssigkeiten zur CO2-absorption
,”
Angew. Chem.
127
,
7916
7920
(
2015
).
19.
D. S.
Firaha
and
B.
Kirchner
, “
Tuning the carbon dioxide absorption in amino acid ionic liquids
,”
ChemSusChem
9
,
1591
1599
(
2016
).
20.
O.
Hollóczki
,
Z.
Kelemen
,
L.
Könczöl
,
D.
Szieberth
,
L.
Nyulászi
,
A.
Stark
, and
B.
Kirchner
, “
Significant cation effects in carbon dioxide–ionic liquid systems
,”
ChemPhysChem
14
,
315
(
2013
).
21.
Q. R.
Sheridan
,
W. F.
Schneider
, and
E. J.
Maginn
, “
Role of molecular modeling in the development of CO2–reactive ionic liquids
,”
Chem. Rev.
118
,
5242
5260
(
2018
).
22.
J. F.
Brennecke
and
B. E.
Gurkan
, “
Ionic liquids for CO2 capture and emission reduction
,”
J. Phys. Chem. Lett.
1
,
3459
3464
(
2010
).
23.
D.
Almantariotis
,
T.
Gefflaut
,
A. A. H.
Pádua
,
J.-Y.
Coxam
, and
M. F.
Costa Gomes
, “
Effect of fluorination and size of the alkyl side-chain on the solubility of carbon dioxide in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide ionic liquids
,”
J. Phys. Chem. B
114
,
3608
3617
(
2010
).
24.
H.
Wibowo
,
W.
Liao
,
X.
Zhou
,
C.
Yu
,
D. A.
Rahim
,
D.
Hantoko
,
H.
Qun
, and
M.
Yan
, “
Study on the effect of operating parameters towards CO2 absorption behavior of choline chloride–monoethanolamine deep eutectic solvent and its aqueous solutions
,”
Chem. Eng. Process.
157
,
108142
(
2020
).
25.
M. B.
Haider
,
D.
Jha
,
B.
Marriyappan Sivagnanam
, and
R.
Kumar
, “
Thermodynamic and kinetic studies of CO2 capture by glycol and amine-based deep eutectic solvents
,”
J. Chem. Eng. Data
63
,
2671
2680
(
2018
).
26.
L. L.
Sze
,
S.
Pandey
,
S.
Ravula
,
S.
Pandey
,
H.
Zhao
,
G. A.
Baker
, and
S. N.
Baker
, “
Ternary deep eutectic solvents tasked for carbon dioxide capture
,”
ACS Sustainable Chem. Eng.
2
,
2117
2123
(
2014
).
27.
Y.
Gu
,
Y.
Hou
,
S.
Ren
,
Y.
Sun
, and
W.
Wu
, “
Hydrophobic functional deep eutectic solvents used for efficient and reversible capture of CO2
,”
ACS Omega
5
,
6809
6816
(
2020
).
28.
R. B.
Leron
and
M.-H.
Li
, “
Solubility of carbon dioxide in a choline chloride–ethylene glycol based deep eutectic solvent
,”
Thermochim. Acta
551
,
14
19
(
2013
).
29.
R. B.
Leron
,
A.
Caparanga
, and
M.-H.
Li
, “
Carbon dioxide solubility in a deep eutectic solvent based on choline chloride and urea at T = 303.15–343.15 K and moderate pressures
,”
J. Taiwan Inst. Chem. Eng.
44
,
879
885
(
2013
).
30.
S. N. V. K.
Aki
,
B. R.
Mellein
,
E. M.
Saurer
, and
J. F.
Brennecke
, “
High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids
,”
J. Phys. Chem. B
108
,
20355
20365
(
2004
).
31.
G.
García
,
S.
Aparicio
,
R.
Ullah
, and
M.
Atilhan
, “
Deep eutectic solvents: Physicochemical properties and gas separation applications
,”
Energy Fuels
29
,
2616
2644
(
2015
).
32.
G.
García
,
M.
Atilhan
, and
S.
Aparicio
, “
A theoretical study on mitigation of CO2 through advanced deep eutectic solvents
,”
Int. J. Greenhouse Gas Control
39
,
62
73
(
2015
).
33.
R.
Ullah
,
M.
Atilhan
,
B.
Anaya
,
M.
Khraisheh
,
G.
García
,
A.
ElKhattat
,
M.
Tariq
, and
S.
Aparicio
, “
A detailed study of cholinium chloride and levulinic acid deep eutectic solvent system for CO2 capture via experimental and molecular simulation approaches
,”
Phys. Chem. Chem. Phys.
17
,
20941
20960
(
2015
).
34.
T.
Altamash
,
M.
Atilhan
,
A.
Aliyan
,
R.
Ullah
,
G.
García
, and
S.
Aparicio
, “
Insights into choline chloride–phenylacetic acid deep eutectic solvent for CO2 absorption
,”
RSC Adv.
6
,
109201
109210
(
2016
).
35.
CP2K Open Source Molecular Dynamics Home Page, Official Webpage: https://www.cp2k.org; accessed 01 March 2013.
36.
R. B.
Leron
and
M.-H.
Li
, “
High-pressure volumetric properties of choline chloride–ethylene glycol based deep eutectic solvent and its mixtures with water
,”
Thermochim. Acta
546
,
54
60
(
2012
).
37.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
38.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
, “
Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids
,”
J. Am. Chem. Soc.
118
,
11225
11236
(
1996
).
39.
A. A. H.
Padua
, http://github.com/agiliopadua/fftool,
2013
.
40.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
519
(
1984
).
41.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
42.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
, “
Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
,”
Comput. Phys. Commun.
167
,
103
128
(
2005
).
43.
J.
VandeVondele
and
J.
Hutter
, “
Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases
,”
J. Chem. Phys.
127
,
114105
(
2007
).
44.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
(
1988
).
45.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
(
1988
).
46.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
, “
Separable dual-space Gaussian pseudopotentials
,”
Phys. Rev. B
54
,
1703
(
1996
).
47.
C.
Hartwigsen
,
S.
Goedecker
, and
J.
Hutter
, “
Relativistic separable dual-space Gaussian pseudopotentials from H to Rn
,”
Phys. Rev. B
58
,
3641
(
1998
).
48.
M.
Krack
, “
Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals
,”
Theor. Chem. Acc.
114
,
145
152
(
2005
).
49.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
50.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
1465
(
2011
).
51.
J.
VandeVondele
and
J.
Hutter
, “
An efficient orbital transformation method for electronic structure calculations
,”
J. Chem. Phys.
118
,
4365
4369
(
2003
).
52.
V.
Weber
,
J.
VandeVondele
,
J.
Hutter
, and
A. M. N.
Niklasson
, “
Direct energy functional minimization under orthogonality constraints
,”
J. Chem. Phys.
128
,
084113
(
2008
).
53.
M. J.
McGrath
,
J. I.
Siepmann
,
I.-F. W.
Kuo
,
C. J.
Mundy
,
J.
VandeVondele
,
J.
Hutter
,
F.
Mohamed
, and
M.
Krack
, “
Isobaric–isothermal Monte Carlo simulations from first principles: Application to liquid water at ambient conditions
,”
ChemPhysChem
6
,
1894
1901
(
2005
).
54.
L. R.
Pestana
,
N.
Mardirossian
,
M.
Head-Gordon
, and
T.
Head-Gordon
, “
Ab initio molecular dynamics simulations of liquid water using high quality meta-GGA functionals
,”
Chem. Sci.
8
,
3554
3565
(
2017
).
55.
M.
Brehm
and
B.
Kirchner
, “
TRAVIS—A free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories
,”
J. Chem. Inf. Model.
4
,
2007
(
2011
).
56.
M.
Brehm
,
M.
Thomas
,
S.
Gehrke
, and
B.
Kirchner
, “
TRAVIS—A free analyzer for trajectories from molecular simulation
,”
J. Chem. Phys.
152
,
164105
(
2020
).
57.
Grace Development Team
, https://plasma-gate.weizmann.ac.il/Grace/,
1996–2008
.
58.
C. R.
Ashworth
,
R. P.
Matthews
,
T.
Welton
, and
P. A.
Hunt
, “
Doubly ionic hydrogen bond interactions within the choline chloride–urea deep eutectic solvent
,”
Phys. Chem. Chem. Phys.
18
,
18145
18160
(
2016
).
59.
A.
Korotkevich
,
D. S.
Firaha
,
A. A. H.
Padua
, and
B.
Kirchner
, “
Ab initio molecular dynamics simulations of SO2 solvation in choline chloride/glycerol deep eutectic solvent
,”
Fluid Phase Equilib.
448
,
59
68
(
2017
).
60.
V.
Alizadeh
,
F.
Malberg
,
A. A. H.
Pádua
, and
B.
Kirchner
, “
Are there magic compositions in deep eutectic solvents? Effects of composition and water content in choline chloride/ethylene glycol from ab initio molecular dynamics
,”
J. Phys. Chem. B
124
,
7433
7443
(
2020
).
61.
D. S.
Firaha
and
B.
Kirchner
, “
CO2 absorption in the protic ionic liquid ethylammonium nitrate
,”
J. Chem. Eng. Data
59
,
3098
3104
(
2014
).
You do not currently have access to this content.