Stable crystalline structures of confined water can be different from bulk ice. In Paper I [T. Yagasaki et al., J. Chem. Phys. 151, 064702 (2019)] of this study, it was shown, using molecular dynamics (MD) simulations, that a zeolite-like ice structure forms in nanobrushes consisting of (6,6) carbon nanotubes (CNTs) when the CNTs are located in a triangle arrangement. The melting temperature of the zeolite-like ice structure is much higher than the melting temperature of ice Ih when the distance between the surfaces of CNTs is ∼0.94 nm, which is the best spacing for the bilayer structure of water. In this paper, we perform MD simulations of nanobrushes of CNTs that are different from (6,6) CNTs in radius. Several new porous ice structures form spontaneously in the MD simulations. A stable porous ice forms when the radius of its cavities matches the radius of the CNTs well. All cylindrical porous ice structures found in this study can be decomposed into a small number of structural blocks. We provide a new protocol to classify cylindrical porous ice crystals on the basis of this decomposition.

1.
A.
Pohorille
and
L. R.
Pratt
,
Origins Life Evol. Biospheres
42
,
405
(
2012
).
2.
G. A.
Jeffrey
,
J. Inclusion Phenom.
1
,
211
(
1984
).
3.
H.
Tanaka
,
T.
Yagasaki
, and
M.
Matsumoto
,
Planet. Sci. J.
1
,
80
(
2020
).
4.
P.
Linga
,
R.
Kumar
, and
P.
Englezos
,
J. Hazard. Mater.
149
,
625
(
2007
).
5.
T.
Sugahara
,
H.
Machida
,
S.
Muromachi
, and
N.
Tenma
,
Int. J. Refrig.
106
,
113
(
2019
).
6.
A.
Falenty
,
T. C.
Hansen
, and
W. F.
Kuhs
,
Nature
516
,
231
(
2014
).
7.
L.
Del Rosso
,
M.
Celli
, and
L.
Ulivi
,
Nat. Commun.
7
,
13394
(
2016
).
8.
M. M.
Conde
,
C.
Vega
,
G. A.
Tribello
, and
B.
Slater
,
J. Chem. Phys.
131
,
034510
(
2009
).
9.
G. A.
Tribello
,
B.
Slater
,
M. A.
Zwijnenburg
, and
R. G.
Bell
,
Phys. Chem. Chem. Phys.
12
,
8597
(
2010
).
10.
Y.
Huang
,
C.
Zhu
,
L.
Wang
,
X.
Cao
,
Y.
Su
,
X.
Jiang
,
S.
Meng
,
J.
Zhao
, and
X. C.
Zeng
,
Sci. Adv.
2
,
e1501010
(
2016
).
11.
E. A.
Engel
,
A.
Anelli
,
M.
Ceriotti
,
C. J.
Pickard
, and
R. J.
Needs
,
Nat. Commun.
9
,
2173
(
2018
).
12.
Y.
Liu
and
L.
Ojamäe
,
Phys. Chem. Chem. Phys.
20
,
8333
(
2018
).
13.
T.
Matsui
,
M.
Hirata
,
T.
Yagasaki
,
M.
Matsumoto
, and
H.
Tanaka
,
J. Chem. Phys.
147
,
091101
(
2017
).
14.
T.
Yagasaki
,
M.
Yamasaki
,
M.
Matsumoto
, and
H.
Tanaka
,
J. Chem. Phys.
151
,
064702
(
2019
).
15.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
(
2008
).
16.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
,
11225
(
1996
).
17.
G. A.
Kaminski
,
R. A.
Friesner
,
J.
Tirado-Rives
, and
W. L.
Jorgensen
,
J. Phys. Chem. B
105
,
6474
(
2001
).
18.
Q.
Zhao
and
J.
Zhang
,
Small
10
,
4586
(
2014
).
19.
X.
Zhao
,
Y.
Liu
,
S.
Inoue
,
T.
Suzuki
,
R. O.
Jones
, and
Y.
Ando
,
Phys. Rev. Lett.
92
,
125502
(
2004
).
20.
J. L. F.
Abascal
and
C.
Vega
,
J. Chem. Phys.
123
,
234505
(
2005
).
21.
J.
Vatamanu
and
P. G.
Kusalik
,
J. Chem. Phys.
126
,
124703
(
2007
).
22.
T.
Yagasaki
,
M.
Matsumoto
, and
H.
Tanaka
,
J. Phys. Chem. B
122
,
3396
(
2018
).
23.
C.
Baerlocher
and
L. B.
McCusker
, http://www.iza-Structure.org/databases/,
2008
.
24.
M.
Matsumoto
,
T.
Yagasaki
, and
H.
Tanaka
,
J. Comput. Chem.
39
,
61
(
2018
).
25.
M.
Matsumoto
,
T.
Yagasaki
, and
H.
Tanaka
,
Phys. Rev. Lett.
115
,
197801
(
2015
).
26.
A.
Haji-Akbari
and
P. G.
Debenedetti
,
Proc. Natl. Acad. Sci. U. S. A.
112
,
10582
(
2015
).
27.
M.
O’Keeffe
,
M. A.
Peskov
,
S. J.
Ramsden
, and
O. M.
Yaghi
,
Acc. Chem. Res.
41
,
1782
(
2008
).
28.
T.
James
,
D. J.
Wales
, and
J.
Hernández-Rojas
,
Chem. Phys. Lett.
415
,
302
(
2005
).
29.
H.
Tanaka
and
K.
Koga
,
J. Chem. Phys.
123
,
094706
(
2005
).
30.
J. R.
Errington
and
P. G.
Debenedetti
,
Nature
409
,
318
(
2001
).
31.
M. v.
Stackelberg
,
Naturwissenschaften
36
,
327
(
1949
).

Supplementary Material

You do not currently have access to this content.