Photoelectron spectra of early 3d-transition metal dioxide anions, ScO2, TiO2, VO2, CrO2, and MnO2, are calculated using semilocal and hybrid density functional theory (DFT) and many-body perturbation theory within the GW approximation using one-shot perturbative and eigenvalue self-consistent formalisms. Different levels of theory are compared with each other and with available photoelectron spectra. We show that one-shot GW with a PBE0 starting point (G0W0@PBE0) consistently provides very good agreement for all experimentally measured binding energies (within 0.1 eV–0.2 eV or less). We attribute this to the success of PBE0 in mitigating self-interaction error and providing good quasiparticle wave functions, which renders a first-order perturbative GW correction effective. One-shot GW calculations with a Perdew–Burke–Ernzerhof (PBE) starting point do poorly in predicting electron removal energies by underbinding orbitals with typical errors near 1.5 eV. A higher exact exchange amount of 50% in the DFT starting point of one-shot GW does not provide very good agreement with experiment by overbinding orbitals with typical errors near 0.5 eV. While not as accurate as G0W0@PBE0, the G-only eigenvalue self-consistent GW scheme with W fixed to the PBE level provides a reasonably predictive level of theory (typical errors near 0.3 eV) to describe photoelectron spectra of these 3d-transition metal dioxide anions. Adding eigenvalue self-consistency also in W, on the other hand, worsens the agreement with experiment overall. Our findings on the performance of various GW methods are discussed in the context of our previous studies on other transition metal oxide molecular systems.

1.
L.
Reining
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1344
(
2018
).
2.
P.
Rinke
,
A.
Qteish
,
J.
Neugebauer
,
C.
Freysoldt
, and
M.
Scheffler
,
New J. Phys.
7
,
126
(
2005
).
3.
F.
Bruneval
,
N.
Vast
, and
L.
Reining
,
Phys. Rev. B
74
,
045102
(
2006
).
4.
M. L.
Tiago
and
J. R.
Chelikowsky
,
Phys. Rev. B
73
,
205334
(
2006
).
5.
M.
Shishkin
and
G.
Kresse
,
Phys. Rev. B
75
,
235102
(
2007
).
6.
F.
Fuchs
,
J.
Furthmüller
,
F.
Bechstedt
,
M.
Shishkin
, and
G.
Kresse
,
Phys. Rev. B
76
,
115109
(
2007
).
7.
C.
Rostgaard
,
K. W.
Jacobsen
, and
K. S.
Thygesen
,
Phys. Rev. B
81
,
085103
(
2010
).
8.
Y.
Ma
,
M.
Rohlfing
, and
C.
Molteni
,
J. Chem. Theory Comput.
6
,
257
265
(
2010
).
9.
X.
Blase
and
C.
Attaccalite
,
Appl. Phys. Lett.
99
,
171909
(
2011
).
10.
X.
Blase
,
C.
Attaccalite
, and
V.
Olevano
,
Phys. Rev. B
83
,
115103
(
2011
).
11.
C.
Faber
,
C.
Attaccalite
,
V.
Olevano
,
E.
Runge
, and
X.
Blase
,
Phys. Rev. B
83
,
115123
(
2011
).
12.
X.
Qian
,
P.
Umari
, and
N.
Marzari
,
Phys. Rev. B
84
,
075103
(
2011
).
13.
14.
X.
Ren
,
P.
Rinke
,
V.
Blum
,
J.
Wieferink
,
A.
Tkatchenko
,
A.
Sanfilippo
,
K.
Reuter
, and
M.
Scheffler
,
New J. Phys.
14
,
053020
(
2012
).
15.
N.
Marom
,
F.
Caruso
,
X.
Ren
,
O. T.
Hofmann
,
T.
Körzdörfer
,
J. R.
Chelikowsky
,
A.
Rubio
,
M.
Scheffler
, and
P.
Rinke
,
Phys. Rev. B
86
,
245127
(
2012
).
16.
B.
Baumeier
,
D.
Andrienko
,
Y.
Ma
, and
M.
Rohlfing
,
J. Chem. Theory Comput.
8
,
997
1002
(
2012
).
17.
M. J.
van Setten
,
F.
Weigend
, and
F.
Evers
,
J. Chem. Theory Comput.
9
,
232
246
(
2013
).
18.
F.
Bruneval
and
M. A. L.
Marques
,
J. Chem. Theory Comput.
9
,
324
329
(
2013
).
19.
T. A.
Pham
,
H.-V.
Nguyen
,
D.
Rocca
, and
G.
Galli
,
Phys. Rev. B
87
,
155148
(
2013
).
20.
F.
Caruso
,
P.
Rinke
,
X.
Ren
,
A.
Rubio
, and
M.
Scheffler
,
Phys. Rev. B
88
,
075105
(
2013
).
21.
V.
Atalla
,
M.
Yoon
,
F.
Caruso
,
P.
Rinke
, and
M.
Scheffler
,
Phys. Rev. B
88
,
165122
(
2013
).
22.
J.
Klimeš
,
M.
Kaltak
, and
G.
Kresse
,
Phys. Rev. B
90
,
075125
(
2014
).
23.
C.
Faber
,
P.
Boulanger
,
C.
Attaccalite
,
I.
Duchemin
, and
X.
Blase
,
Philos. Trans. R. Soc., A
372
,
20130271
(
2014
).
24.
P.
Koval
,
D.
Foerster
, and
D.
Sánchez-Portal
,
Phys. Rev. B
89
,
155417
(
2014
).
25.
P.
Boulanger
,
D.
Jacquemin
,
I.
Duchemin
, and
X.
Blase
,
J. Chem. Theory Comput.
10
,
1212
1218
(
2014
).
26.
S.
Körbel
,
P.
Boulanger
,
I.
Duchemin
,
X.
Blase
,
M. A. L.
Marques
, and
S.
Botti
,
J. Chem. Theory Comput.
10
,
3934
3943
(
2014
).
27.
L.-W.
Wang
,
Phys. Rev. B
91
,
125135
(
2015
).
28.
D.
Hirose
,
Y.
Noguchi
, and
O.
Sugino
,
Phys. Rev. B
91
,
205111
(
2015
).
29.
F.
Bruneval
,
S. M.
Hamed
, and
J. B.
Neaton
,
J. Chem. Phys.
142
,
244101
(
2015
).
30.
D.
Jacquemin
,
I.
Duchemin
, and
X.
Blase
,
J. Chem. Theory Comput.
11
,
3290
3304
(
2015
).
31.
M. J.
van Setten
,
F.
Caruso
,
S.
Sharifzadeh
,
X.
Ren
,
M.
Scheffler
,
F.
Liu
,
J.
Lischner
,
L.
Lin
,
J. R.
Deslippe
,
S. G.
Louie
,
C.
Yang
,
F.
Weigend
,
J. B.
Neaton
,
F.
Evers
, and
P.
Rinke
,
J. Chem. Theory Comput.
11
,
5665
5687
(
2015
).
32.
J.
Wilhelm
,
M.
Del Ben
, and
J.
Hutter
,
J. Chem. Theory Comput.
12
,
3623
3635
(
2016
).
33.
F.
Kaplan
,
M. E.
Harding
,
C.
Seiler
,
F.
Weigend
,
F.
Evers
, and
M. J.
van Setten
,
J. Chem. Theory Comput.
12
,
2528
2541
(
2016
).
34.
F.
Caruso
,
M.
Dauth
,
M. J.
van Setten
, and
P.
Rinke
,
J. Chem. Theory Comput.
12
,
5076
5087
(
2016
).
35.
J. W.
Knight
,
X.
Wang
,
L.
Gallandi
,
O.
Dolgounitcheva
,
X.
Ren
,
J. V.
Ortiz
,
P.
Rinke
,
T.
Körzdörfer
, and
N.
Marom
,
J. Chem. Theory Comput.
12
,
615
626
(
2016
).
36.
L.
Hung
,
F. H.
da Jornada
,
J.
Souto-Casares
,
J. R.
Chelikowsky
,
S. G.
Louie
, and
S.
Öğüt
,
Phys. Rev. B
94
,
085125
(
2016
).
37.
L.
Hung
,
F.
Bruneval
,
K.
Baishya
, and
S.
Öğüt
,
J. Chem. Theory Comput.
13
,
2135
2146
(
2017
).
38.
L.
Hung
,
F.
Bruneval
,
K.
Baishya
, and
S.
Öğüt
,
J. Chem. Theory Comput.
13
,
5820
5821
(
2017
).
39.
E.
Maggio
,
P.
Liu
,
M. J.
van Setten
, and
G.
Kresse
,
J. Chem. Theory Comput.
13
,
635
648
(
2017
).
40.
M.
Govoni
and
G.
Galli
,
J. Chem. Theory Comput.
14
,
1895
1909
(
2018
).
41.
M.
Grumet
,
P.
Liu
,
M.
Kaltak
,
J.
Klimeš
,
G.
Kresse
,
M.
Kaltak
, and
G.
Kresse
,
Phys. Rev. B
98
,
155143
(
2018
).
42.
B.
Shi
,
S.
Weissman
,
F.
Bruneval
,
L.
Kronik
, and
S.
Öğüt
,
J. Chem. Phys.
149
,
064306
(
2018
).
43.
Y.-M.
Byun
and
S.
Öğüt
,
J. Chem. Phys.
151
,
134305
(
2019
).
44.
W.
Gao
and
J. R.
Chelikowsky
,
J. Chem. Theory Comput.
15
,
5299
5307
(
2019
).
45.
D.
Golze
,
M.
Dvorak
, and
P.
Rinke
,
Front. Chem.
7
,
377
(
2019
).
46.
H.
Wu
and
L. S.
Wang
,
J. Chem. Phys.
107
,
8221
(
1997
).
47.
H.
Wu
and
L.-S.
Wang
,
J. Phys. Chem. A
102
,
9129
9135
(
1998
).
48.
H.
Wu
and
L.-S.
Wang
,
J. Chem. Phys.
108
,
5310
(
1998
).
49.
G. L.
Gutsev
,
B. K.
Rao
,
P.
Jena
,
X.
Li
, and
L.-S.
Wang
,
J. Chem. Phys.
113
,
1473
(
2000
).
50.
G. L.
Gutsev
,
P.
Jena
,
H.-J.
Zhai
, and
L.-S.
Wang
,
J. Chem. Phys.
115
,
7935
(
2001
).
51.
H.-J.
Zhai
and
L.-S.
Wang
,
J. Am. Chem. Soc.
129
,
3022
3026
(
2007
).
52.
J. B.
Kim
,
M. L.
Weichman
, and
D. M.
Neumark
,
J. Chem. Phys.
140
,
034307
(
2014
).
53.
L. B.
Knight
,
R.
Babb
,
M.
Ray
,
T. J.
Banisaukas
,
L.
Russon
,
R. S.
Dailey
, and
E. R.
Davidson
,
J. Chem. Phys.
105
,
10237
(
1996
).
54.
G. V.
Chertihin
,
W. D.
Bare
, and
L.
Andrews
,
J. Phys. Chem. A
101
,
5090
5096
(
1997
).
55.
M. B.
Walsh
,
R. A.
King
, and
H. F.
Schaefer
,
J. Chem. Phys.
110
,
5224
(
1999
).
56.
M.
Zhou
and
L.
Andrews
,
J. Chem. Phys.
111
,
4230
(
1999
).
57.
J. M.
Gonzales
,
R. A.
King
, and
H. F.
Schaefer
,
J. Chem. Phys.
113
,
567
(
2000
).
58.
S. F.
Vyboishchikov
and
J.
Sauer
,
J. Phys. Chem. A
104
,
10913
10922
(
2000
).
59.
G. L.
Gutsev
,
B. K.
Rao
, and
P.
Jena
,
J. Phys. Chem. A
104
,
11961
11971
(
2000
).
60.
J.
Dong
,
Y.
Wang
, and
M.
Zhou
,
Chem. Phys. Lett.
364
,
511
516
(
2002
).
61.
F.
Grein
,
J. Chem. Phys.
126
,
034313
(
2007
).
62.
S.
Li
and
D. A.
Dixon
,
J. Phys. Chem. A
112
,
6646
6666
(
2008
).
63.
E. L.
Uzunova
,
H.
Mikosch
, and
G. S.
Nikolov
,
J. Chem. Phys.
128
,
094307
(
2008
).
64.
Y.
Gong
,
M.
Zhou
, and
L.
Andrews
,
Chem. Rev.
109
,
6765
6808
(
2009
).
65.
Y.
Liu
,
Y.
Yuan
,
Z.
Wang
,
K.
Deng
,
C.
Xiao
, and
Q.
Li
,
J. Chem. Phys.
130
,
174308
(
2009
).
66.
E. P. F.
Lee
,
D. K. W.
Mok
,
F.-T.
Chau
, and
J. M.
Dyke
,
J. Comput. Chem.
30
,
337
345
(
2009
).
67.
Z.-W.
Qu
and
H.
Zhu
,
J. Comput. Chem.
31
,
2038
2045
(
2010
).
68.
N.
Marom
,
J. E.
Moussa
,
X.
Ren
,
A.
Tkatchenko
, and
J. R.
Chelikowsky
,
Phys. Rev. B
84
,
245115
(
2011
).
69.
D. J.
Taylor
and
M. J.
Paterson
,
J. Chem. Phys.
408
,
1
10
(
2012
).
70.
J. B.
Kim
,
M. L.
Weichman
, and
D. M.
Neumark
,
Phys. Chem. Chem. Phys.
15
,
20973
(
2013
).
71.
M. F. A.
Hendrickx
and
V. T.
Tran
,
J. Chem. Theory Comput.
10
,
4037
4044
(
2014
).
72.
G.
Xu
and
F.
Yu
,
J. Electron Spectrosc. Relat. Phenom.
205
,
10
22
(
2015
).
73.
M.
Valiev
,
E. J.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
H. J. J.
Van Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T. L.
Windus
, and
W. A.
de Jong
,
Comput. Phys. Commun.
181
,
1477
(
2010
).
74.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
75.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
76.
F.
Bruneval
,
T.
Rangel
,
S. M.
Hamed
,
M.
Shao
,
C.
Yang
, and
J. B.
Neaton
,
Comput. Phys. Commun.
208
,
149
(
2016
).
77.
C.
Hättig
,
W.
Klopper
,
A.
Köhn
, and
D. P.
Tew
,
Chem. Rev.
112
,
4
74
(
2012
).
78.
J. G.
Hill
and
J. A.
Platts
,
J. Chem. Phys.
128
,
044104
(
2008
).

Supplementary Material

You do not currently have access to this content.