We employ theoretically “exact” and numerically “accurate” Beyond Born–Oppenheimer (BBO) treatment to construct diabatic potential energy surfaces (PESs) of the benzene radical cation (C6H6+) for the first time and explore the workability of the time-dependent discrete variable representation (TDDVR) method for carrying out dynamical calculations to evaluate the photoelectron (PE) spectra of its neutral analog. Ab initio adiabatic PESs and nonadiabatic coupling terms are computed over a series of pairwise normal modes, which exhibit rich nonadiabatic interactions starting from Jahn–Teller interactions and accidental conical intersections/seams to pseudo Jahn–Teller couplings. Once the electronic structure calculation is completed on the low-lying five doublet electronic states (X̃2E1g, B̃2E2g, and C̃2A2u) of the cationic species, diabatization is carried out employing the adiabatic-to-diabatic transformation (ADT) equations for the five-state sub-Hilbert space to compute highly accurate ADT angles, and thereby, single-valued, smooth, symmetric, and continuous diabatic PESs and couplings are constructed. Subsequently, such surface matrices are used to perform multi-state multi-mode nuclear dynamics for simulating PE spectra of benzene. Our theoretical findings clearly depict that the spectra for X̃2E1g and B̃2E2gC̃2A2u states obtained from BBO treatment and TDDVR dynamics exhibit reasonably good agreement with the experimental results as well as with the findings of other theoretical approaches.

1.
H.
Köppel
,
L. S.
Cederbaum
, and
W.
Domcke
,
J. Chem. Phys.
89
,
2023
(
1988
).
2.
M.
Döscher
,
H.
Köppel
, and
P. G.
Szalay
,
J. Chem. Phys.
117
,
2645
(
2002
).
3.
H.
Köppel
,
M.
Döscher
,
I.
Bâldea
,
H.-D.
Meyer
, and
P. G.
Szalay
,
J. Chem. Phys.
117
,
2657
(
2002
).
4.
H.
Köppel
,
I.
Bâldea
, and
P. G.
Szalay
,
Adv. Quantum Chem.
44
,
199
(
2003
).
5.
J.
Eiding
,
R.
Schneider
,
W.
Domcke
,
H.
Köppel
, and
W.
von Niessen
,
Chem. Phys. Lett.
177
,
345
(
1991
).
6.
P. M.
Johnson
,
J. Chem. Phys.
117
,
9991
(
2002
).
7.
P. M.
Johnson
,
J. Chem. Phys.
117
,
10001
(
2002
).
8.
L.
Åsbrink
,
E.
Lindholm
, and
O.
Edqvist
,
Chem. Phys. Lett.
5
,
609
(
1970
).
9.
P.
Baltzer
,
L.
Karlsson
,
B.
Wannberg
,
G.
Öhrwall
,
D. M. P.
Holland
,
M. A.
MacDonald
,
M. A.
Hayes
, and
W.
von Niessen
,
Chem. Phys.
224
,
95
(
1997
).
10.
A.
Ishitani
and
S.
Nagakura
,
Mol. Phys.
12
,
1
(
2006
).
11.
H.
Krause
and
H. J.
Neusser
,
J. Chem. Phys.
97
,
5923
(
1992
).
12.
M.
Ford
,
R.
Lindner
, and
K. M.
Dethlefs
,
Mol. Phys.
101
,
705
(
2003
).
13.
R.
Lindner
,
H.
Sekiya
,
B.
Beyl
, and
K.
Müller-Dethlefs
,
Angew. Chem., Int. Ed. Engl.
32
,
603
(
1993
).
14.
C. H.
Kwon
,
H. L.
Kim
, and
M. S.
Kim
,
J. Chem. Phys.
119
,
4305
(
2003
).
15.
S.
Sardar
,
A. K.
Paul
,
R.
Sharma
, and
S.
Adhikari
,
J. Chem. Phys.
130
,
144302
(
2009
).
16.
S.
Sardar
,
A. K.
Paul
,
R.
Sharma
, and
S.
Adhikari
,
Int. J. Quantum Chem.
111
,
2741
(
2011
).
17.
S.
Sardar
and
S.
Adhikari
,
J. Chem. Sci.
124
,
51
(
2012
).
18.
M.
Born
and
J. R.
Oppenheimer
,
Ann. Phys. (Leipzig)
389
,
457
(
1927
).
19.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Oxford University Press
,
Oxford
,
1954
).
20.
I.
Last
,
M.
Gilibert
, and
M.
Baer
,
J. Chem. Phys.
107
,
1451
(
1997
).
21.
R.
Baer
,
D. M.
Charutz
,
R.
Kosloff
, and
M.
Baer
,
J. Chem. Phys.
105
,
9141
(
1996
).
22.
S.
Adhikari
and
G. D.
Billing
,
J. Chem. Phys.
111
,
40
(
1999
).
23.
A. J. C.
Varandas
and
Z. R.
Xu
,
J. Chem. Phys.
112
,
2121
(
2000
).
24.
S.
Adhikari
,
G. D.
Billing
,
A.
Alijah
,
S. H.
Lin
, and
M.
Baer
,
Phys. Rev. A
62
,
32507
(
2000
).
25.
B.
Sarkar
and
S.
Adhikari
,
J. Chem. Phys.
124
,
074101
(
2006
).
26.
B.
Sarkar
and
S.
Adhikari
,
J. Phys. Chem. A
112
,
9868
(
2008
).
27.
A. K.
Paul
,
S.
Sardar
,
B.
Sarkar
, and
S.
Adhikari
,
J. Chem. Phys.
131
,
124312
(
2009
).
28.
H.
Hellmann
,
Einfuring in die Quantenchemie
(
Franz Duetiche
,
Leipzig, Germany
,
1937
).
29.
R. P.
Feynman
,
Phys. Rev.
56
,
340
(
1939
).
30.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
,
Adv. Chem. Phys.
57
,
59
(
1984
).
31.
A.
Thiel
and
H.
Köppel
,
J. Chem. Phys.
110
,
9371
(
1999
).
32.
A.
Abedi
,
N. T.
Maitra
, and
E. K. U.
Gross
,
Phys. Rev. Lett.
105
,
123002
(
2010
).
33.
G. W.
Richings
,
I.
Polyak
,
K. E.
Spinlove
,
G. A.
Worth
,
I.
Burghardt
, and
B.
Lasorne
,
Int. Rev. Phys. Chem.
34
,
269
(
2015
).
34.
A. J. C.
Varandas
,
F. B.
Brown
,
C. A.
Mead
,
D. G.
Truhlar
, and
N. C.
Blais
,
J. Chem. Phys.
86
,
6258
(
1987
).
35.
H.
Nakamura
and
D. G.
Truhlar
,
J. Chem. Phys.
118
,
6816
(
2003
).
36.
C.
Evenhuis
and
T. J.
Martínez
,
J. Chem. Phys.
135
,
224110
(
2011
).
37.
X.
Zhu
and
D. R.
Yarkony
,
J. Chem. Phys.
136
,
174110
(
2012
).
38.
R. G.
Sadygov
and
D. R.
Yarkony
,
J. Chem. Phys.
110
,
3639
(
1999
).
39.
T.
Yonehara
,
K.
Hanasaki
, and
K.
Takatsuka
,
Chem. Rev.
112
,
499
(
2012
).
40.
41.
Z. H.
Top
and
M.
Baer
,
J. Chem. Phys.
66
,
1363
(
1977
).
43.
M.
Baer
,
Beyond Born–Oppenheimer: Conical Intersections and Electronic Nonadiabatic Coupling Terms
(
Wiley-Interscience
,
Hoboken, NJ
,
2006
).
44.
M.
Baer
and
R.
Englman
,
Mol. Phys.
75
,
293
(
1992
).
45.
A.
Alijah
and
M.
Baer
,
J. Phys. Chem. A
104
,
389
(
2000
).
46.
S.
Mukherjee
,
S.
Bandyopadhyay
,
A. K.
Paul
, and
S.
Adhikari
,
J. Phys. Chem. A
117
,
3475
(
2013
).
47.
S.
Mukherjee
,
B.
Mukherjee
, and
S.
Adhikari
,
J. Phys. Chem. A
121
,
6314
(
2017
).
48.
S.
Mukherjee
,
J.
Dutta
,
B.
Mukherjee
,
S.
Sardar
, and
S.
Adhikari
,
J. Chem. Phys.
150
,
064308
(
2019
).
49.
B.
Mukherjee
,
K.
Naskar
,
S.
Mukherjee
,
S.
Ghosh
,
T.
Sahoo
, and
S.
Adhikari
,
Int. Rev. Phys. Chem.
38
,
287
(
2019
).
50.
J.
Dutta
,
S.
Mukherjee
,
K.
Naskar
,
S.
Ghosh
,
B.
Mukherjee
,
S.
Ravi
, and
S.
Adhikari
,
Phys. Chem. Chem. Phys.
22
,
27496
(
2020
).
51.
K.
Naskar
,
S.
Mukherjee
,
B.
Mukherjee
,
S.
Ravi
,
S.
Mukherjee
,
S.
Sardar
, and
S.
Adhikari
,
J. Chem. Theory Comput.
16
,
1666
(
2020
).
52.
S.
Mukherjee
,
B.
Mukherjee
,
S.
Sardar
, and
S.
Adhikari
,
J. Chem. Phys.
143
,
244307
(
2015
).
53.
B.
Mukherjee
,
S.
Mukherjee
,
S.
Sardar
,
K. R.
Shamasundar
, and
S.
Adhikari
,
Mol. Phys.
115
,
2833
(
2017
).
54.
B.
Mukherjee
,
S.
Mukherjee
,
S.
Sardar
,
K. R.
Shamasundar
, and
S.
Adhikari
,
Chem. Phys.
515
,
350
(
2018
).
55.
S.
Mukherjee
,
D.
Mukhopadhyay
, and
S.
Adhikari
,
J. Chem. Phys.
141
,
204306
(
2014
).
56.
S.
Ghosh
,
S.
Mukherjee
,
B.
Mukherjee
,
S.
Mandal
,
R.
Sharma
,
P.
Chaudhury
, and
S.
Adhikari
,
J. Chem. Phys.
147
,
074105-1
(
2017
).
57.
B.
Mukherjee
,
K.
Naskar
,
S.
Mukherjee
,
S.
Ravi
,
K. R.
Shamasundar
,
D.
Mukhopadhyay
, and
S.
Adhikari
,
J. Chem. Phys.
153
,
174301
(
2020
).
58.
I.
Burghardt
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
111
,
2927
(
1999
).
59.
I.
Burghardt
,
M.
Nest
, and
G. A.
Worth
,
J. Chem. Phys.
119
,
5364
(
2003
).
60.
I.
Burghardt
,
K.
Giri
, and
G. A.
Worth
,
J. Chem. Phys.
129
,
174104
(
2008
).
61.
G. A.
Worth
and
I.
Burghardt
,
Chem. Phys. Lett.
368
,
502
(
2003
).
62.
G. A.
Worth
,
M. A.
Robb
, and
B.
Lasorne
,
Mol. Phys.
106
,
2077
(
2008
).
63.
T. J.
Martínez
,
M.
Ben-Nun
, and
R. D.
Levine
,
J. Phys. Chem.
100
,
7884
(
1996
).
64.
M.
Ben-Nun
and
T. J.
Mart
́nez
ı,
J. Chem. Phys.
108
,
7244
(
1998
).
65.
S.
Yang
,
J. D.
Coe
,
B.
Kaduk
, and
T. J.
Martínez
,
J. Chem. Phys.
130
,
134113
(
2009
).
66.
S.
Adhikari
and
G. D.
Billing
,
J. Chem. Phys.
113
,
1409
(
2000
).
67.
B.
Barkakaty
and
S.
Adhikari
,
J. Chem. Phys.
118
,
5302
(
2003
).
68.
B. A.
Khan
,
S.
Sardar
,
P.
Sarkar
, and
S.
Adhikari
,
J. Phys. Chem. A
118
(
49
),
11451
(
2014
).
69.
S.
Mandal
,
S.
Ghosh
,
S.
Sardar
, and
S.
Adhikari
,
Int. Rev. Phys. Chem.
37
,
607
(
2018
).
70.
M.
Beck
,
A.
Jäckle
,
G.
Worth
, and
H.-D.
Meyer
,
Phys. Rep.
324
,
1
(
2000
).
71.
H.-D.
Meyer
,
Adv. Rev.
2
,
351
(
2012
).
72.
B. G.
Levine
and
T. J.
Martińez
,
J. Phys. Chem. A
113
,
12815
(
2009
).
73.
G. D.
Billing
and
S.
Adhikari
,
Chem. Phys. Lett.
321
,
197
(
2000
).
74.
P.
Puzari
,
S. A.
Deshpande
, and
S.
Adhikari
,
Chem. Phys.
300
,
305
(
2004
).
75.
P.
Puzari
and
S.
Adhikari
,
Int. J. Quantum Chem.
98
,
434
(
2004
).
76.
P.
Puzari
,
B.
Sarkar
, and
S.
Adhikari
,
J. Chem. Phys.
121
,
707
(
2004
).
77.
P.
Puzari
,
B.
Sarkar
, and
S.
Adhikari
,
Int. J. Quantum Chem.
105
,
209
(
2005
).
78.
P.
Puzari
,
B.
Sarkar
, and
S.
Adhikari
,
Chem. Phys.
324
,
497
(
2006
).
79.
S.
Sardar
,
A. K.
Paul
, and
S.
Adhikari
,
J. Chem. Soc.
122
,
491
(
2010
).
80.
P.
Puzari
,
R. S.
Swathi
,
B.
Sarkar
, and
S.
Adhikari
,
J. Chem. Phys.
123
,
134317
(
2005
).
81.
P.
Puzari
,
B.
Sarkar
, and
S.
Adhikari
,
J. Chem. Phys.
125
,
194316
(
2006
).
82.
S.
Sardar
,
A. K.
Paul
,
P.
Mondal
,
B.
Sarkar
, and
S.
Adhikari
,
Phys. Chem. Chem. Phys.
10
,
6388
(
2008
).
83.
S.
Sardar
,
A. K.
Paul
, and
S.
Adhikari
,
Mol. Phys.
107
,
2467
(
2009
).
84.
S.
Sardar
,
P.
Puzari
, and
S.
Adhikari
,
Chem. Phys. Lett.
496
,
341
(
2010
).
85.
S.
Sardar
,
P.
Puzari
, and
S.
Adhikari
,
Phys. Chem. Chem. Phys.
13
,
15960
(
2011
).
86.
B. A.
Khan
,
S.
Sardar
,
T.
Sahoo
,
P.
Sarkar
, and
S.
Adhikari
,
J. Theor. Comput. Chem.
12
,
1350042
(
2013
).
87.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al., “
Molpro, version 2010.1, a package of ab initio programs
,”
2010
, see http://www.molpro.net.
88.
H.
Lischka
,
R.
Shepard
,
I.
Shavitt
,
R. M.
Pitzer
,
M.
Dallos
 et al., Columbus, an ab initio electronic structure program, release 7.0, 2017.
89.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
,
J. Comput. Chem.
14
,
1347
(
1993
).
90.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
 et al., “
Gaussian 16, revision C.01
,”
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
91.
P. A. M.
Dirac
,
Proc. Cambridge Philos. Soc.
26
,
376
(
1930
).
92.
A.
Doi
,
M.
Baba
,
S.
Kasahara
, and
H.
Katô
,
J. Mol. Spectrosc.
227
,
180
(
2004
).
93.
T.
Shimanouchi
,
Tables of Molecular Vibrational Frequencies
(
U.S. Department of Commerce, National Bureau of Standards
,
1967
), Vol. 1.
94.
M.
Baba
,
Y.
Kowaka
,
U.
Nagashima
,
T.
Ishimoto
,
H.
Goto
, and
N.
Nakayama
,
J. Chem. Phys.
135
,
054305-1
(
2011
).
95.
H. C.
Longuet-Higgins
, “
Some recent developments in the theory of molecular energy levels
,” in
Advances in Spectroscopy
(
Interscience Publishers, Ltd.
,
New York, London
,
1961
), Vol. 2.
96.
G.
Herzberg
and
H. C.
Longuet-Higgins
,
Discuss. Faraday Soc.
35
,
77
(
1963
).
97.
S.
Pancharatnam
,
Proc. Indian. Acad. Sci. A
44
,
247
(
1956
).
98.
M. V.
Berry
,
Proc. R. Soc. London, Ser. A
392
,
45
(
1984
).
99.
S.
Mukherjee
,
B.
Mukherjee
,
S.
Sardar
, and
S.
Adhikari
,
Comput. Theor. Chem.
1154
,
57
(
2019
).
100.
S.
Mukherjee
,
B.
Mukherjee
,
J.
Dutta
,
S.
Sardar
, and
S.
Adhikari
,
ACS Omega
3
,
12465
(
2018
).
101.
H. A.
Jahn
and
E.
Teller
,
Proc. R. Soc. London, Ser. A
161
,
220
(
1937
).
102.
J. H. V.
Vleck
,
J. Chem. Phys.
7
,
72
(
1939
).
103.
H. C.
Longuet-Higgins
,
U.
Öpik
,
M. H. L.
Pryce
, and
R. A.
Sack
,
Proc. R. Soc. London, Ser. A
244
,
1
(
1958
).
104.
U.
Öpik
and
M. H. L.
Pryce
,
Proc. R. Soc. London, Ser. A
238
,
425
(
1957
).
105.
S.
Mahapatra
,
H.
Köppel
, and
L. S.
Cederbaum
,
J. Chem. Phys.
110
,
5691
(
1999
).
106.
T.
Mondal
and
S.
Mahapatra
,
Phys. Chem. Chem. Phys.
11
,
10867
(
2009
).
107.
A.
Viel
and
W.
Eisfeld
,
J. Chem. Phys.
120
,
4603
(
2004
).
108.
S.
Faraji
,
H.
Köppel
,
W.
Eisfeld
, and
S.
Mahapatra
,
Chem. Phys.
347
,
110
(
2008
).
109.
R. J.
Hickman
,
R. A.
Lang
, and
T.
Zeng
,
Phys. Chem. Chem. Phys.
20
,
12312
(
2018
).

Supplementary Material

You do not currently have access to this content.