Two important extensions of Kohn–Sham (KS) theory are generalized KS theory and ensemble KS theory. The former allows for non-multiplicative potential operators and greatly facilitates practical calculations with advanced, orbital-dependent functionals. The latter allows for quantum ensembles and enables the treatment of open systems and excited states. Here, we combine the two extensions, both formally and practically, first via an exact yet complicated formalism and then via a computationally tractable variant that involves a controlled approximation of ensemble “ghost interactions” by means of an iterative algorithm. The resulting formalism is illustrated using selected examples. This opens the door to the application of generalized KS theory in more challenging quantum scenarios and to the improvement of ensemble theories for the purpose of practical and accurate calculations.

1.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
3.
R. G.
Parr
and
W.
Yang
,
Density Functional Theory of Atoms and Molecules
(
Oxford University Press
,
New York
,
1989
).
4.
R. M.
Martin
,
Electronic Structure: Basic Theory and Practical Methods
(
Cambridge University Press
,
Cambridge
,
2004
).
5.
A. D.
Becke
, “
A new mixing of Hartree–Fock and local density-functional theories
,”
J. Chem. Phys.
98
,
1372
1377
(
1993
).
6.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
6169
(
1999
).
7.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Erratum: ‘Hybrid functionals based on a screened Coulomb potential’
,”
J. Chem. Phys.
124
,
219906
(
2006
).
8.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
, “
A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP)
,”
Chem. Phys. Lett.
393
,
51
57
(
2004
).
9.
J.-D.
Chai
and
M.
Head-Gordon
, “
Systematic optimization of long-range corrected hybrid density functionals
,”
J. Chem. Phys.
128
,
084106
(
2008
).
10.
Y.
Zhao
and
D. G.
Truhlar
, “
The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals
,”
Theor. Chem. Acc.
120
,
215
241
(
2008
).
11.
A.
Seidl
,
A.
Görling
,
P.
Vogl
,
J. A.
Majewski
, and
M.
Levy
, “
Generalized Kohn-Sham schemes and the band-gap problem
,”
Phys. Rev. B
53
,
3764
3774
(
1996
).
12.
A.
Görling
and
M.
Levy
, “
Hybrid schemes combining the Hartree–Fock method and density-functional theory: Underlying formalism and properties of correlation functionals
,”
J. Chem. Phys.
106
,
2675
2680
(
1997
).
13.
R.
Baer
and
L.
Kronik
, “
Time-dependent generalized Kohn-Sham theory
,”
Eur. Phys. J. B
91
,
170
(
2018
).
14.
R.
Garrick
,
A.
Natan
,
T.
Gould
, and
L.
Kronik
, “
Exact generalized Kohn-Sham theory for hybrid functionals
,”
Phys. Rev. X
10
,
021040
(
2020
).
15.
J. P.
Perdew
and
K.
Schmidt
, “
Jacob’s ladder of density functional approximations for the exchange-correlation energy
,”
AIP Conf. Proc.
577
,
1
20
(
2001
).
16.
R. T.
Sharp
and
G. K.
Horton
, “
A variational approach to the unipotential many-electron problem
,”
Phys. Rev.
90
,
317
(
1953
).
17.
J. D.
Talman
and
W. F.
Shadwick
, “
Optimized effective atomic central potential
,”
Phys. Rev. A
14
,
36
40
(
1976
).
18.
T.
Grabo
,
T.
Kreibich
, and
E. K. U.
Gross
, “
Optimized effective potential for atoms and molecules
,”
Mol. Eng.
7
,
27
50
(
1997
).
19.
E.
Engel
, “
Orbital-dependent functionals for the exchange-correlation energy: A third generation of density functionals
,” in
A Primer in Density Functional Theory
, edited by
C.
Fiolhais
,
F.
Nogueira
, and
M. A. L.
Marques
(
Springer
,
Berlin
,
2003
), Chap. 2, pp.
56
122
.
20.
S.
Kümmel
and
J. P.
Perdew
, “
Optimized effective potential made simple: Orbital functionals, orbital shifts, and the exact Kohn-Sham exchange potential
,”
Phys. Rev. B
68
,
035103
(
2003
).
21.
S.
Kümmel
and
L.
Kronik
, “
Orbital-dependent density functionals: Theory and applications
,”
Rev. Mod. Phys.
80
,
3
60
(
2008
).
22.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
, “
Density-functional theory for fractional particle number: Derivative discontinuities of the energy
,”
Phys. Rev. Lett.
49
,
1691
1694
(
1982
).
23.
T.
Stein
,
H.
Eisenberg
,
L.
Kronik
, and
R.
Baer
, “
Fundamental gaps in finite systems from eigenvalues of a generalized Kohn-Sham method
,”
Phys. Rev. Lett.
105
,
266802
(
2010
).
24.
J. P.
Perdew
,
W.
Yang
,
K.
Burke
,
Z.
Yang
,
E. K. U.
Gross
,
M.
Scheffler
,
G. E.
Scuseria
,
T. M.
Henderson
,
I. Y.
Zhang
,
A.
Ruzsinszky
,
H.
Peng
,
J.
Sun
,
E.
Trushin
, and
A.
Görling
, “
Understanding band gaps of solids in generalized Kohn-Sham theory
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
2801
2806
(
2017
).
25.
T.
Stein
,
L.
Kronik
, and
R.
Baer
, “
Reliable prediction of charge transfer excitations in molecular complexes using time-dependent density functional theory
,”
J. Am. Chem. Soc.
131
,
2818
2820
(
2009
).
26.
N. T.
Maitra
, “
Charge transfer in time-dependent density functional theory
,”
J. Phys.: Condens. Matter
29
,
423001
(
2017
).
27.
S.
Kümmel
, “
Charge-transfer excitations: A challenge for time-dependent density functional theory that has been met
,”
Adv. Energy Mater.
7
,
1700440
(
2017
).
28.
T.
Gould
and
J. F.
Dobson
, “
The flexible nature of exchange, correlation, and Hartree physics: Resolving ‘delocalization’ errors in a ‘correlation free’ density functional
,”
J. Chem. Phys.
138
,
014103
(
2013
).
29.
E.
Kraisler
and
L.
Kronik
, “
Piecewise linearity of approximate density functionals revisited: Implications for Frontier orbital energies
,”
Phys. Rev. Lett.
110
,
126403
(
2013
).
30.
E.
Kraisler
and
L.
Kronik
, “
Fundamental gaps with approximate density functionals: The derivative discontinuity revealed from ensemble considerations
,”
J. Chem. Phys.
140
,
18A540
(
2014
).
31.
T.
Gould
and
J.
Toulouse
, “
Kohn-Sham potentials in exact density-functional theory at noninteger electron numbers
,”
Phys. Rev. A
90
,
050502
(
2014
).
32.
A.
Görling
, “
Exchange-correlation potentials with proper discontinuities for physically meaningful Kohn-Sham eigenvalues and band structures
,”
Phys. Rev. B
91
,
245120
(
2015
).
33.
B.
Senjean
and
E.
Fromager
, “
Unified formulation of fundamental and optical gap problems in density-functional theory for ensembles
,”
Phys. Rev. A
98
,
022513
(
2018
).
34.
B.
Senjean
and
E.
Fromager
, “
N-centered ensemble density-functional theory for open systems
,”
Int. J. Quantum Chem.
120
,
e26190
(
2020
).
35.
E. K. U.
Gross
,
L. N.
Oliveira
, and
W.
Kohn
, “
Rayleigh-Ritz variational principle for ensembles of fractionally occupied states
,”
Phys. Rev. A
37
,
2805
2808
(
1988
).
36.
E. K. U.
Gross
,
L. N.
Oliveira
, and
W.
Kohn
, “
Density-functional theory for ensembles of fractionally occupied states. I. Basic formalism
,”
Phys. Rev. A
37
,
2809
2820
(
1988
).
37.
L. N.
Oliveira
,
E. K. U.
Gross
, and
W.
Kohn
, “
Density-functional theory for ensembles of fractionally occupied states. II. Application to the he atom
,”
Phys. Rev. A
37
,
2821
2833
(
1988
).
38.
T.
Gould
and
S.
Pittalis
, “
Density-driven correlations in ensemble density functional theory: Insights from simple excitations in atoms
,”
Aust. J. Chem.
73
,
714
723
(
2020
).
39.
M.
Filatov
and
S.
Shaik
, “
A spin-restricted ensemble-referenced Kohn-Sham method and its application to diradicaloid situations
,”
Chem. Phys. Lett.
304
,
429
437
(
1999
).
40.
M.
Filatov
,
M.
Huix-Rotllant
, and
I.
Burghardt
, “
Ensemble density functional theory method correctly describes bond dissociation, excited state electron transfer, and double excitations
,”
J. Chem. Phys.
142
,
184104
(
2015
).
41.
M.
Filatov
, “
Spin-restricted ensemble-referenced Kohn-Sham method: Basic principles and application to strongly correlated ground and excited states of molecules
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
5
,
146
167
(
2015
).
42.
M.
Filatov
, “
Ensemble DFT approach to excited states of strongly correlated molecular systems
,” in
Density-Functional Methods for Excited States
, edited by
N.
Ferré
,
M.
Filatov
, and
M.
Huix-Rotllant
(
Springer International Publishing
,
Cham
,
2016
), pp.
97
124
.
43.
E.
Pastorczak
,
N. I.
Gidopoulos
, and
K.
Pernal
, “
Calculation of electronic excited states of molecules using the Helmholtz free-energy minimum principle
,”
Phys. Rev. A
87
,
062501
(
2013
).
44.
E.
Pastorczak
and
K.
Pernal
, “
Ensemble density variational methods with self- and ghost-interaction-corrected functionals
,”
J. Chem. Phys.
140
,
18A514
(
2014
).
45.
K.
Pernal
,
N. I.
Gidopoulos
, and
E.
Pastorczak
, “
Excitation energies of molecules from ensemble density functional theory
,” in
Advances in Quantum Chemistry
(
Elsevier
,
2016
), pp.
199
229
.
46.
A.
Pribram-Jones
,
Z.-h.
Yang
,
J. R.
Trail
,
K.
Burke
,
R. J.
Needs
, and
C. A.
Ullrich
, “
Excitations and benchmark ensemble density functional theory for two electrons
,”
J. Chem. Phys.
140
,
18A541
(
2014
).
47.
Z.-h.
Yang
,
J. R.
Trail
,
A.
Pribram-Jones
,
K.
Burke
,
R. J.
Needs
, and
C. A.
Ullrich
, “
Exact and approximate Kohn-Sham potentials in ensemble density-functional theory
,”
Phys. Rev. A
90
,
042501
(
2014
).
48.
Z.-h.
Yang
,
A.
Pribram-Jones
,
K.
Burke
, and
C. A.
Ullrich
, “
Direct extraction of excitation energies from ensemble density-functional theory
,”
Phys. Rev. Lett.
119
,
033003
(
2017
).
49.
O.
Franck
and
E.
Fromager
, “
Generalised adiabatic connection in ensemble density-functional theory for excited states: Example of the H2 molecule
,”
Mol. Phys.
112
,
1684
1701
(
2014
).
50.
K.
Deur
,
L.
Mazouin
, and
E.
Fromager
, “
Exact ensemble density functional theory for excited states in a model system: Investigating the weight dependence of the correlation energy
,”
Phys. Rev. B
95
,
035120
(
2017
).
51.
F.
Sagredo
and
K.
Burke
, “
Accurate double excitations from ensemble density functional calculations
,”
J. Chem. Phys.
149
,
134103
(
2018
).
52.
K.
Deur
and
E.
Fromager
, “
Ground and excited energy levels can be extracted exactly from a single ensemble density-functional theory calculation
,”
J. Chem. Phys.
150
,
094106
(
2019
).
53.
E.
Fromager
, “
Individual correlations in ensemble density-functional theory: State- and density-driven decompositions without additional Kohn-Sham systems
,”
Phys. Rev. Lett.
124
,
243001
(
2020
).
54.
C.
Marut
,
B.
Senjean
,
E.
Fromager
, and
P.-F.
Loos
, “
Weight dependence of local exchange-correlation functionals in ensemble density-functional theory: Double excitations in two-electron systems
,”
Faraday Discuss.
224
,
402
(
2020
).
55.
P.-F.
Loos
and
E.
Fromager
, “
A weight-dependent local correlation density-functional approximation for ensembles
,”
J. Chem. Phys.
152
,
214101
(
2020
).
56.
T.
Gould
and
S.
Pittalis
, “
Hartree and exchange in ensemble density functional theory: Avoiding the nonuniqueness disaster
,”
Phys. Rev. Lett.
119
,
243001
(
2017
).
57.
T.
Gould
,
L.
Kronik
, and
S.
Pittalis
, “
Charge transfer excitations from exact and approximate ensemble Kohn-Sham theory
,”
J. Chem. Phys.
148
,
174101
(
2018
).
58.
T.
Gould
and
S.
Pittalis
, “
Density-driven correlations in many-electron ensembles: Theory and application for excited states
,”
Phys. Rev. Lett.
123
,
016401
(
2019
).
59.
T.
Gould
,
G.
Stefanucci
, and
S.
Pittalis
, “
Ensemble density functional theory: Insight from the fluctuation-dissipation theorem
,”
Phys. Rev. Lett.
125
,
233001
(
2020
).
60.
T.
Gould
, “
Approximately self-consistent ensemble density functional theory: Toward inclusion of all correlations
,”
J. Phys. Chem. Lett.
11
,
9907
9912
(
2020
).
61.
N. D.
Mermin
, “
Thermal properties of the inhomogeneous electron gas
,”
Phys. Rev.
137
,
A1441
A1443
(
1965
).
62.
S.
Pittalis
,
C. R.
Proetto
,
A.
Floris
,
A.
Sanna
,
C.
Bersier
,
K.
Burke
, and
E. K. U.
Gross
, “
Exact conditions in finite-temperature density-functional theory
,”
Phys. Rev. Lett.
107
,
163001
(
2011
).
63.

We use atomic units, m = e2/(4πϵ0) = = 1, throughout.

64.
A.
Savin
and
H.-J.
Flad
, “
Density functionals for the Yukawa electron-electron interaction
,”
Int. J. Quantum Chem.
56
,
327
332
(
1995
).
65.
L.
Kronik
,
T.
Stein
,
S.
Refaely-Abramson
, and
R.
Baer
, “
Excitation gaps of finite-sized systems from optimally tuned range-separated hybrid functionals
,”
J. Chem. Theory Comput.
8
,
1515
1531
(
2012
).
66.
N. I.
Gidopoulos
,
P. G.
Papaconstantinou
, and
E. K. U.
Gross
, “
Spurious interactions, and their correction, in the ensemble-Kohn-Sham scheme for excited states
,”
Phys. Rev. Lett.
88
,
033003
(
2002
).
67.

The use of a finite Gaussian-type orbital basis means asymptotics are never truly correct. But we expect the asymptotically correct Hamiltonian to yield more accurate orbitals.

68.
T.
Gould
,
S.
Pittalis
,
J.
Toulouse
,
E.
Kraisler
, and
L.
Kronik
, “
Asymptotic behavior of the Hartree-exchange and correlation potentials in ensemble density functional theory
,”
Phys. Chem. Chem. Phys.
21
,
19805
19815
(
2019
).
69.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
70.
R. M.
Parrish
,
L. A.
Burns
,
D. G. A.
Smith
,
A. C.
Simmonett
,
A. E.
DePrince
,
E. G.
Hohenstein
,
U.
Bozkaya
,
A. Y.
Sokolov
,
R.
Di Remigio
,
R. M.
Richard
,
J. F.
Gonthier
,
A. M.
James
,
H. R.
McAlexander
,
A.
Kumar
,
M.
Saitow
,
X.
Wang
,
B. P.
Pritchard
,
P.
Verma
,
H. F.
Schaefer
,
K.
Patkowski
,
R. A.
King
,
E. F.
Valeev
,
F. A.
Evangelista
,
J. M.
Turney
,
T. D.
Crawford
, and
C. D.
Sherrill
, “
Psi4 1.1: An open-source electronic structure program emphasizing automation, advanced libraries, and interoperability
,”
J. Chem. Theory Comput.
13
,
3185
3197
(
2017
).
71.
D. G. A.
Smith
,
L. A.
Burns
,
D. A.
Sirianni
,
D. R.
Nascimento
,
A.
Kumar
,
A. M.
James
,
J. B.
Schriber
,
T.
Zhang
,
B.
Zhang
,
A. S.
Abbott
,
E. J.
Berquist
,
M. H.
Lechner
,
L. A.
Cunha
,
A. G.
Heide
,
J. M.
Waldrop
,
T. Y.
Takeshita
,
A.
Alenaizan
,
D.
Neuhauser
,
R. A.
King
,
A. C.
Simmonett
,
J. M.
Turney
,
H. F.
Schaefer
,
F. A.
Evangelista
,
A. E.
DePrince
,
T. D.
Crawford
,
K.
Patkowski
, and
C. D.
Sherrill
, “
Psi4NumPy: An interactive quantum chemistry programming environment for reference implementations and rapid development
,”
J. Chem. Theory Comput.
14
,
3504
3511
(
2018
).
72.
P.
Lykos
and
G. W.
Pratt
, “
Discussion on the Hartree-Fock approximation
,”
Rev. Mod. Phys.
35
,
496
501
(
1963
).
73.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
, “
Many-electron self-interaction error in approximate density functionals
,”
J. Chem. Phys.
125
,
201102
(
2006
).
74.
T.
Stein
,
J.
Autschbach
,
N.
Govind
,
L.
Kronik
, and
R.
Baer
, “
Curvature and Frontier orbital energies in density functional theory
,”
J. Phys. Chem. Lett.
3
,
3740
3744
(
2012
).
You do not currently have access to this content.