We address topics related to molecules coupled to quantum radiation. The formalism of light–matter interaction is different for classical and quantum fields, but some analogies remain, such as the formation of light induced crossings. We show that under particular circumstances, the molecular dynamics under quantum or classical fields produce similar results, as long as the radiation is prepared as a Fock state and far from ultra-strong coupling regimes. At this point, the choice of specific initial Fock states is irrelevant since the dynamics scales. However, in realistic multistate molecular systems, radiative scaling may fail due to the presence of simultaneous efficient non-radiative couplings in the dynamics. Polar molecules have permanent dipoles, and within the context of the full quantum Rabi model with a Pauli–Fierz Hamiltonian, they play a crucial role in the polaritonic dynamics since both permanent dipole moments and self-energy terms produce drastic changes on the undressed potential energy surfaces at high coupling strengths. We also gauge the effect of including rotational degrees of freedom in cavity molecular photodynamics. For diatomic molecules, the addition of rotation amounts to transform (both with classical or quantum fields) a light induced crossing into a light induced conical intersection. However, we show that conical intersections due to molecular rotation do not represent the standard properties of well-known efficient intrinsic conical intersections inasmuch they do not enhance the quantum transition rates.

1.
F.
Herrera
and
F. C.
Spano
, “
Cavity-controlled chemistry in molecular ensembles
,”
Phys. Rev. Lett.
116
,
238301
(
2016
).
2.
M.
Kowalewski
,
K.
Bennett
, and
S.
Mukamel
, “
Non-adiabatic dynamics of molecules in optical cavities
,”
J. Chem. Phys.
144
,
054309
(
2016
).
3.
M.
Kowalewski
,
K.
Bennett
, and
S.
Mukamel
, “
Cavity femtochemistry: Manipulating nonadiabatic dynamics at avoided crossings
,”
J. Phys. Chem. Lett.
7
,
2050
2054
(
2016
).
4.
M.
Kowalewski
and
S.
Mukamel
, “
Manipulating molecules with quantum light
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
3278
3280
(
2017
).
5.
J.
Flick
,
M.
Ruggenthaler
,
H.
Appel
, and
A.
Rubio
, “
Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
3026
3034
(
2017
).
6.
J.
Feist
,
J.
Galego
, and
F. J.
Garcia-Vidal
, “
Polaritonic chemistry with organic molecules
,”
ACS Photonics
5
,
205
216
(
2018
).
7.
R. F.
Ribeiro
,
L. A.
Martínez-Martínez
,
M.
Du
,
J.
Campos-González-Angulo
, and
J.
Yuen-Zhou
, “
Polariton chemistry: Controlling molecular dynamics with optical cavities
,”
Chem. Sci.
9
,
6325
6339
(
2018
).
8.
F.
Herrera
and
J.
Owrutsky
, “
Molecular polaritons for controlling chemistry with quantum optics
,”
J. Chem. Phys.
152
,
100902
(
2020
).
9.
J. P.
Long
and
B. S.
Simpkins
, “
Coherent coupling between a molecular vibration and Fabry–Perot optical cavity to give hybridized states in the strong coupling limit
,”
ACS Photonics
2
,
130
136
(
2015
).
10.
M.
Muallem
,
A.
Palatnik
,
G. D.
Nessim
, and
Y. R.
Tischler
, “
Strong light-matter coupling and hybridization of molecular vibrations in a low-loss infrared microcavity
,”
J. Phys. Chem. Lett.
7
,
2002
2008
(
2016
).
11.
J.
George
,
T.
Chervy
,
A.
Shalabney
,
E.
Devaux
,
H.
Hiura
,
C.
Genet
, and
T. W.
Ebbesen
, “
Multiple Rabi splittings under ultrastrong vibrational coupling
,”
Phys. Rev. Lett.
117
,
153601
(
2016
).
12.
T. W.
Ebbesen
, “
Hybrid light–matter states in a molecular and material science perspective
,”
Acc. Chem. Res.
49
,
2403
2412
(
2016
).
13.
W.
Ahn
,
I.
Vurgaftman
,
A. D.
Dunkelberger
,
J. C.
Owrutsky
, and
B. S.
Simpkins
, “
Vibrational strong coupling controlled by spatial distribution of molecules within the optical cavity
,”
ACS Photonics
5
,
158
166
(
2018
).
14.
R.
Chikkaraddy
,
B.
de Nijs
,
F.
Benz
,
S. J.
Barrow
,
O. A.
Scherman
,
E.
Rosta
,
A.
Demetriadou
,
P.
Fox
,
O.
Hess
, and
J. J.
Baumberg
, “
Single-molecule strong coupling at room temperature in plasmonic nanocavities
,”
Nature
535
,
127
130
(
2016
).
15.
O.
Vendrell
, “
Collective Jahn-Teller interactions through light-matter coupling in a cavity
,”
Phys. Rev. Lett.
121
,
253001
(
2018
).
16.
I. S.
Ulusoy
,
J. A.
Gomez
, and
O.
Vendrell
, “
Modifying the nonradiative decay dynamics through conical intersections via collective coupling to a cavity mode
,”
J. Phys. Chem. A
123
,
8832
8844
(
2019
).
17.
R. H.
Dicke
, “
Coherence in spontaneous radiation processes
,”
Phys. Rev.
93
,
99
110
(
1954
).
18.
M.
Tavis
and
F. W.
Cummings
, “
Exact solution for an N-molecule—Radiation-field Hamiltonian
,”
Phys. Rev.
170
,
379
384
(
1968
).
19.
R. E. F.
Silva
,
J.
del Pino
,
F. J.
García-Vidal
, and
J.
Feist
, “
Polaritonic molecular clock for all-optical ultrafast imaging of wavepacket dynamics without probe pulses
,”
Nat. Commun.
11
,
1423
(
2020
).
20.
I. S.
Ulusoy
and
O.
Vendrell
, “
Dynamics and spectroscopy of molecular ensembles in a lossy microcavity
,”
J. Chem. Phys.
153
,
044108
(
2020
).
21.
S.
Felicetti
,
J.
Fregoni
,
T.
Schnappinger
,
S.
Reiter
,
R.
de Vivie-Riedle
, and
J.
Feist
, “
Photoprotecting uracil by coupling with lossy nanocavities
,”
J. Phys. Chem. Lett.
11
,
8810
8818
(
2020
).
22.
P.
Antoniou
,
F.
Suchanek
,
J. F.
Varner
, and
J. J.
Foley
, “
Role of cavity losses on nonadiabatic couplings and dynamics in polaritonic chemistry
,”
J. Phys. Chem. Lett.
11
,
9063
9069
(
2020
).
23.
N.
Moiseyev
,
M.
Šindelka
, and
L. S.
Cederbaum
, “
Laser-induced conical intersections in molecular optical lattices
,”
J. Phys. B: At., Mol. Opt. Phys.
41
,
221001
(
2008
).
24.
A.
Csehi
,
G. J.
Halász
,
L. S.
Cederbaum
, and
Á.
Vibók
, “
Competition between light-induced and intrinsic nonadiabatic phenomena in diatomics
,”
J. Phys. Chem. Lett.
8
,
1624
1630
(
2017
).
25.
T.
Szidarovszky
,
G. J.
Halász
,
A. G.
Császár
,
L. S.
Cederbaum
, and
Á.
Vibók
, “
Direct signatures of light-induced conical intersections on the field-dressed spectrum of Na2
,”
J. Phys. Chem. Lett.
9
,
2739
2745
(
2018
).
26.
T.
Szidarovszky
,
G. J.
Halász
,
A. G.
Császár
,
L. S.
Cederbaum
, and
Á.
Vibók
, “
Conical intersections induced by quantum light: Field-dressed spectra from the weak to the ultrastrong coupling regimes
,”
J. Phys. Chem. Lett.
9
,
6215
6223
(
2018
).
27.
A.
Csehi
,
G. J.
Halász
,
L. S.
Cederbaum
, and
Á.
Vibók
, “
Intrinsic and light-induced nonadiabatic phenomena in the NaI molecule
,”
Phys. Chem. Chem. Phys.
19
,
19656
19664
(
2017
).
28.
A.
Csehi
,
M.
Kowalewski
,
G. J.
Halász
, and
Á.
Vibók
, “
Ultrafast dynamics in the vicinity of quantum light-induced conical intersections
,”
New J. Phys.
21
,
093040
(
2019
).
29.
J. F.
Triana
,
D.
Peláez
, and
J. L.
Sanz-Vicario
, “
Entangled photonic-nuclear molecular dynamics of LiF in quantum optical cavities
,”
J. Phys. Chem. A
122
,
2266
2278
(
2018
).
30.
J. F.
Triana
and
J. L.
Sanz-Vicario
, “
Revealing the presence of potential crossings in diatomics induced by quantum cavity radiation
,”
Phys. Rev. Lett.
122
,
063603
(
2019
).
31.
A.
Csehi
,
A.
Vibók
,
G. J.
Halász
, and
M.
Kowalewski
, “
Quantum control with quantum light of molecular nonadiabaticity
,”
Phys. Rev. A
100
,
053421
(
2019
).
32.
A.
Mandal
,
S.
Montillo Vega
, and
P.
Huo
, “
Polarized Fock states and the dynamical Casimir effect in molecular cavity quantum electrodynamics
,”
J. Phys. Chem. Lett.
11
,
9215
9223
(
2020
).
33.
J. B.
Pérez-Sánchez
and
J.
Yuen-Zhou
, “
Polariton assisted down-conversion of photons via nonadiabatic molecular dynamics: A molecular dynamical Casimir effect
,”
J. Phys. Chem. Lett.
11
,
152
159
(
2020
).
34.
J. F.
Triana
,
F. J.
Hernández
, and
F.
Herrera
, “
The shape of the electric dipole function determines the sub-picosecond dynamics of anharmonic vibrational polaritons
,”
J. Chem. Phys.
152
,
234111
(
2020
).
35.
C.
Schäfer
,
M.
Ruggenthaler
,
V.
Rokaj
, and
A.
Rubio
, “
Relevance of the quadratic diamagnetic and self-polarization terms in cavity quantum electrodynamics
,”
ACS Photonics
7
,
975
990
(
2020
).
36.
J.
Feist
,
A. I.
Fernández-Domínguez
, and
F. J.
García-Vidal
, “
Macroscopic QED for quantum nanophotonics: Emitter-centered modes as a minimal basis for multiemitter problems
,”
Nanophotonics
10
,
477
489
(
2021
).
37.
C.
Gerry
and
P.
Knight
,
Introductory Quantum Optics
(
Cambridge University Press
,
Cambridge
,
2005
).
38.
G. J.
Halász
,
M.
Šindelka
,
N.
Moiseyev
,
L. S.
Cederbaum
, and
Á.
Vibók
, “
Light-induced conical intersections: Topological phase, wave packet dynamics, and molecular alignment
,”
J. Phys. Chem. A
116
,
2636
2643
(
2012
).
39.
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
, “
The multi-configurational time-dependent Hartree approach
,”
Chem. Phys. Lett.
165
,
73
78
(
1990
).
40.
M.
Beck
,
A.
Jackle
,
G.
Worth
, and
H.-D.
Meyer
, “
The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propagating wavepackets
,”
Phys. Rep.
324
,
1
105
(
2000
).
41.
G.
Worth
,
M.
Beck
,
A.
Jäckle
, and
H.
Meyer
, The MCTDH Package, version 8.4,
2007
, http://mctdh.uni-hd.de.
42.
H.
Meyer
,
F.
Gatti
, and
G.
Worth
,
Multidimensional Quantum Dynamics: MCTDH Theory and Applications
(
John Wiley & Sons
,
2009
).
43.
C.-C.
Shu
,
K.-J.
Yuan
,
D.
Dong
,
I. R.
Petersen
, and
A. D.
Bandrauk
, “
Identifying strong-field effects in indirect photofragmentation reactions
,”
J. Phys. Chem. Lett.
8
,
1
6
(
2017
).
44.
H.-J.
Werner
 et al, Molpro, version 2015.1, a package of ab initio programs,
2015
, http://www.molpro.net.
You do not currently have access to this content.