Dynamics of flexible molecules are often determined by an interplay between local chemical bond fluctuations and conformational changes driven by long-range electrostatics and van der Waals interactions. This interplay between interactions yields complex potential-energy surfaces (PESs) with multiple minima and transition paths between them. In this work, we assess the performance of the state-of-the-art Machine Learning (ML) models, namely, sGDML, SchNet, Gaussian Approximation Potentials/Smooth Overlap of Atomic Positions (GAPs/SOAPs), and Behler–Parrinello neural networks, for reproducing such PESs, while using limited amounts of reference data. As a benchmark, we use the cis to trans thermal relaxation in an azobenzene molecule, where at least three different transition mechanisms should be considered. Although GAP/SOAP, SchNet, and sGDML models can globally achieve a chemical accuracy of 1 kcal mol−1 with fewer than 1000 training points, predictions greatly depend on the ML method used and on the local region of the PES being sampled. Within a given ML method, large differences can be found between predictions of close-to-equilibrium and transition regions, as well as for different transition mechanisms. We identify key challenges that the ML models face mainly due to the intrinsic limitations of commonly used atom-based descriptors. All in all, our results suggest switching from learning the entire PES within a single model to using multiple local models with optimized descriptors, training sets, and architectures for different parts of the complex PES.

1.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
,
Rev. Mod. Phys.
62
,
251
(
1990
).
2.
M.
Bachmann
and
W.
Janke
,
Phys. Rev. Lett.
95
,
058102
(
2005
).
3.
D.
Chakraborty
and
D. J.
Wales
,
J. Chem. Phys.
150
,
125101
(
2019
).
4.
J. B.
Cook
,
T. C.
Lin
,
H.-S.
Kim
,
A.
Siordia
,
B. S.
Dunn
, and
S. H.
Tolbert
,
ACS Nano
13
,
1223
(
2019
).
5.
Y.
Zhang
,
J. B.
Chou
,
J.
Li
,
H.
Li
,
Q.
Du
,
A.
Yadav
,
S.
Zhou
,
M. Y.
Shalaginov
,
Z.
Fang
,
H.
Zhong
,
C.
Roberts
,
P.
Robinson
,
B.
Bohlin
,
C.
Ríos
,
H.
Lin
,
M.
Kang
,
T.
Gu
,
J.
Warner
,
V.
Liberman
,
K.
Richardson
, and
J.
Hu
,
Nat. Commun.
10
,
4279
(
2019
).
7.
S.
Piana
,
K.
Lindorff-Larsen
, and
D. E.
Shaw
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
17845
(
2012
).
8.
J. B.
Stiller
,
S.
Jordan Kerns
,
M.
Hoemberger
,
Y.-J.
Cho
,
R.
Otten
,
M. F.
Hagan
, and
D.
Kern
,
Nat. Catal.
2
,
726
(
2019
).
9.
C.
Peng
and
H.
Bernhard Schlegel
,
Isr. J. Chem.
33
,
449
(
1993
).
10.
C.
Peng
,
P. Y.
Ayala
,
H. B.
Schlegel
, and
M. J.
Frisch
,
J. Comput. Chem.
17
,
49
(
1996
).
11.
E.
Weinan
,
W.
Ren
, and
E.
Vanden-Eijnden
,
J. Chem. Phys.
126
,
164103
(
2007
).
12.
H.
Jónsson
,
G.
Mills
, and
K. W.
Jacobsen
, in
Classical and Quantum Dynamics in Condensed Phase Simulations
, edited by
B. J.
Berne
,
G.
Ciccotti
, and
D. F.
Coker
(
World Scientific
,
1998
), pp.
385
404
.
13.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
113
,
9978
(
2000
).
14.
C.
Dellago
,
P. G.
Bolhuis
,
F. S.
Csajka
, and
D.
Chandler
,
J. Chem. Phys.
108
,
1964
(
1998
).
15.
P. G.
Bolhuis
and
G.
Csányi
,
Phys. Rev. Lett.
120
,
250601
(
2018
).
16.
S.
Chmiela
,
A.
Tkatchenko
,
H. E.
Sauceda
,
I.
Poltavsky
,
K. T.
Schütt
, and
K.-R.
Müller
,
Sci. Adv.
3
,
e1603015
(
2017
).
17.
S.
Chmiela
,
H. E.
Sauceda
,
K. R.
Müller
, and
A.
Tkatchenko
,
Nat. Commun.
9
,
3887
(
2018
).
18.
H. E.
Sauceda
,
S.
Chmiela
,
I.
Poltavsky
,
K.-R.
Müller
, and
A.
Tkatchenko
,
J. Chem. Phys.
150
,
114102
(
2019
).
19.
S.
Chmiela
,
H. E.
Sauceda
,
I.
Poltavsky
,
K. R.
Müller
, and
A.
Tkatchenko
,
Comput. Phys. Commun.
240
,
38
(
2019
).
20.
V.
Botu
and
R.
Ramprasad
,
Phys. Rev. B
92
,
094306
(
2015
).
21.
A. S.
Christensen
,
F. A.
Faber
, and
O. A.
von Lilienfeld
,
J. Chem. Phys.
150
,
064105
(
2019
).
22.
A. S.
Christensen
,
L. A.
Bratholm
,
F. A.
Faber
, and
O. A.
von Lilienfeld
,
J. Chem. Phys.
152
,
044107
(
2020
).
23.
M.
Rupp
,
R.
Ramakrishnan
, and
O. A.
von Lilienfeld
,
J. Phys. Chem. Lett.
6
,
3309
(
2015
).
24.
A.
Glielmo
,
P.
Sollich
, and
A.
De Vita
,
Phys. Rev. B
95
,
214302
(
2017
).
25.
M.
Eickenberg
,
G.
Exarchakis
,
M.
Hirn
,
S.
Mallat
, and
L.
Thiry
,
J. Chem. Phys.
148
,
241732
(
2018
).
26.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
,
Phys. Rev. Lett.
104
,
136403
(
2010
).
27.
A. P.
Bartók
and
G.
Csányi
,
Int. J. Quantum Chem.
115
,
1051
(
2015
).
28.
A. P.
Bartók
,
R.
Kondor
, and
G.
Csányi
,
Phys. Rev. B
87
,
184115
(
2013
).
29.
Z.
Li
,
J. R.
Kermode
, and
A.
De Vita
,
Phys. Rev. Lett.
114
,
096405
(
2015
).
30.
E. V.
Podryabinkin
and
A. V.
Shapeev
,
Comput. Mater. Sci.
140
,
171
(
2017
).
31.
P. O.
Dral
,
A.
Owens
,
S. N.
Yurchenko
, and
W.
Thiel
,
J. Chem. Phys.
146
,
244108
(
2017
).
32.
F.
Noé
,
S.
Olsson
,
J.
Köhler
, and
H.
Wu
,
Science
365
,
eaaw1147
(
2019
).
33.
A.
Mardt
,
L.
Pasquali
,
H.
Wu
, and
F.
Noé
,
Nat. Commun.
9
,
5
(
2018
).
34.
J.
Behler
,
S.
Lorenz
, and
K.
Reuter
,
J. Chem. Phys.
127
,
014705
(
2007
).
35.
J.
Behler
,
Phys. Chem. Chem. Phys.
13
,
17930
(
2011
).
36.
J.
Behler
,
J. Chem. Phys.
134
,
074106
(
2011
).
37.
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
146401
(
2007
).
38.
K. V. J.
Jose
,
N.
Artrith
, and
J.
Behler
,
J. Chem. Phys.
136
,
194111
(
2012
).
39.
J.
Behler
,
J. Chem. Phys.
145
,
170901
(
2016
).
40.
M.
Gastegger
,
J.
Behler
, and
P.
Marquetand
,
Chem. Sci.
8
,
6924
(
2017
).
41.
K. T.
Schütt
,
H. E.
Sauceda
,
P.-J.
Kindermans
,
A.
Tkatchenko
, and
K.-R.
Müller
,
J. Chem. Phys.
148
,
241722
(
2018
).
42.
K. T.
Schütt
,
P.-J.
Kindermans
,
H. E.
Sauceda
,
S.
Chmiela
,
A.
Tkatchenko
, and
K.-R.
Müller
, in
Proceedings of the 31st International Conference on Neural Information Processing Systems
, (Curran Associates Inc. Long Beach, CA, 2017) p. 992.
43.
K. T.
Schütt
,
P.
Kessel
,
M.
Gastegger
,
K. A.
Nicoli
,
A.
Tkatchenko
, and
K.-R.
Müller
,
J. Chem. Theory Comput.
15
,
448
(
2019
).
44.
M.
Rupp
,
A.
Tkatchenko
,
K. R.
Müller
, and
O. A.
von Lilienfeld
,
Phys. Rev. Lett.
108
,
058301
(
2012
).
45.
K.
Hansen
,
G.
Montavon
,
F.
Biegler
,
S.
Fazli
,
M.
Rupp
,
M.
Scheffler
,
O. A.
von Lilienfeld
,
A.
Tkatchenko
, and
K.-R.
Müller
,
J. Chem. Theory Comput.
9
,
3404
(
2013
).
46.
S.
De
,
A. P.
Bartók
,
G.
Csányi
, and
M.
Ceriotti
,
Phys. Chem. Chem. Phys.
18
,
13754
(
2016
).
47.
N.
Artrith
,
A.
Urban
, and
G.
Ceder
,
Phys. Rev. B
96
,
014112
(
2017
).
48.
A. P.
Bartók
,
S.
De
,
C.
Poelking
,
N.
Bernstein
,
J. R.
Kermode
,
G.
Csányi
, and
M.
Ceriotti
,
Sci. Adv.
3
,
e1701816
(
2017
).
49.
K.
Yao
,
J. E.
Herr
, and
J.
Parkhill
,
J. Chem. Phys.
146
,
014106
(
2017
).
50.
F. A.
Faber
,
L.
Hutchison
,
B.
Huang
,
J.
Gilmer
,
S. S.
Schoenholz
,
G. E.
Dahl
,
O.
Vinyals
,
S.
Kearnes
,
P. F.
Riley
, and
O. A.
von Lilienfeld
,
J. Chem. Theory Comput.
13
,
5255
(
2017
).
51.
A.
Glielmo
,
C.
Zeni
, and
A.
De Vita
,
Phys. Rev. B
97
,
184307
(
2018
).
52.
A.
Grisafi
,
D. M.
Wilkins
,
G.
Csányi
, and
M.
Ceriotti
,
Phys. Rev. Lett.
120
,
036002
(
2018
).
53.
Y.-H.
Tang
,
D.
Zhang
, and
G. E.
Karniadakis
,
J. Chem. Phys.
148
,
034101
(
2018
).
54.
W.
Pronobis
,
A.
Tkatchenko
, and
K.-R.
Müller
,
J. Chem. Theory Comput.
14
,
2991
(
2018
).
55.
F. A.
Faber
,
A. S.
Christensen
,
B.
Huang
, and
O. A.
von Lilienfeld
,
J. Chem. Phys.
148
,
241717
(
2018
).
56.
K.
Ryczko
,
K.
Mills
,
I.
Luchak
,
C.
Homenick
, and
I.
Tamblyn
,
Comput. Mater. Sci.
149
,
134
(
2018
).
57.
L.
Zhang
,
J.
Han
,
H.
Wang
,
R.
Car
, and
E.
Weinan
,
Phys. Rev. Lett.
120
,
143001
(
2018
).
58.
K.
Shao
,
J.
Chen
,
Z.
Zhao
, and
D. H.
Zhang
,
J. Chem. Phys.
145
,
071101
(
2016
).
59.
K.
Yao
,
J. E.
Herr
,
D. W.
Toth
,
R.
Mckintyre
, and
J.
Parkhill
,
Chem. Sci.
9
,
2261
(
2018
).
60.
F.
Brockherde
,
L.
Vogt
,
L.
Li
,
M. E.
Tuckerman
,
K.
Burke
, and
K. R.
Müller
,
Nat. Commun.
8
,
872
(
2017
).
61.
J. S.
Smith
,
B. T.
Nebgen
,
R.
Zubatyuk
,
N.
Lubbers
,
C.
Devereux
,
K.
Barros
,
S.
Tretiak
,
O.
Isayev
, and
A. E.
Roitberg
,
Nat. Commun.
10
,
2903
(
2019
).
62.
K.
Hansen
,
F.
Biegler
,
R.
Ramakrishnan
,
W.
Pronobis
,
O. A.
von Lilienfeld
,
K.-R.
Müller
, and
A.
Tkatchenko
,
J. Phys. Chem. Lett.
6
,
2326
(
2015
).
63.
H. E.
Sauceda
,
V.
Vassilev-Galindo
,
S.
Chmiela
,
K.-R.
Müller
, and
A.
Tkatchenko
,
Nat. Commun.
12
,
442
(
2021
).
64.
R.
Meyer
,
K. S.
Schmuck
, and
A. W.
Hauser
,
J. Chem. Theory Comput.
15
,
6513
(
2019
).
65.
L.
Pattanaik
,
J. B.
Ingraham
,
C. A.
Grambow
, and
W. H.
Green
,
Phys. Chem. Chem. Phys.
22
,
23618
(
2020
).
66.
P.
Cattaneo
and
M.
Persico
,
Phys. Chem. Chem. Phys.
1
,
4739
(
1999
).
67.
A.
Cembran
,
F.
Bernardi
,
M.
Garavelli
,
L.
Gagliardi
, and
G.
Orlandi
,
J. Am. Chem. Soc.
126
,
3234
(
2004
).
68.
L.
Gagliardi
,
G.
Orlandi
,
F.
Bernardi
,
A.
Cembran
, and
M.
Garavelli
,
Theor. Chem. Acc.
111
,
363
(
2004
).
69.
L.
Wang
and
X.
Wang
,
J. Mol. Struct.: THEOCHEM
806
,
179
(
2007
).
70.
P.
Tavadze
,
G.
Avendaño Franco
,
P.
Ren
,
X.
Wen
,
Y.
Li
, and
J. P.
Lewis
,
J. Am. Chem. Soc.
140
,
285
(
2018
).
71.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
,
Comput. Phys. Commun.
180
,
2175
(
2009
).
72.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
73.
A.
Tkatchenko
and
M.
Scheffler
,
Phys. Rev. Lett.
102
,
073005
(
2009
).
74.
V.
Kapil
,
M.
Rossi
,
O.
Marsalek
,
R.
Petraglia
,
Y.
Litman
,
T.
Spura
,
B.
Cheng
,
A.
Cuzzocrea
,
R. H.
Meißner
,
D. M.
Wilkins
,
B. A.
Helfrecht
,
P.
Juda
,
S. P.
Bienvenue
,
W.
Fang
,
J.
Kessler
,
I.
Poltavsky
,
S.
Vandenbrande
,
J.
Wieme
,
C.
Corminboeuf
,
T. D.
Kühne
,
D. E.
Manolopoulos
,
T. E.
Markland
,
J. O.
Richardson
,
A.
Tkatchenko
,
G. A.
Tribello
,
V.
Van Speybroeck
, and
M.
Ceriotti
,
Comput. Phys. Commun.
236
,
214
(
2019
).
75.
A. G.
Csaszar
,
J. Am. Chem. Soc.
114
,
9568
(
1992
).
76.
L. F.
Pacios
,
O.
Gálvez
, and
P. C.
Gómez
,
J. Phys. Chem. A
105
,
5232
(
2001
).
77.
G. S.
Hartley
,
Nature
140
,
281
(
1937
).
78.
G. S.
Hartley
,
J. Chem. Soc.
1938
,
633
.
79.
E. W. G.
Diau
,
J. Phys. Chem. A
108
,
950
(
2004
).
80.
H. M. D.
Bandara
and
S. C.
Burdette
,
Chem. Soc. Rev.
41
,
1809
(
2012
).
81.
J.
Dokić
,
M.
Gothe
,
J.
Wirth
,
M. V.
Peters
,
J.
Schwarz
,
S.
Hecht
, and
P.
Saalfrank
,
J. Phys. Chem. A
113
,
6763
(
2009
).
82.
See https://github.com/fonsecag/MLFF for a code to optimize the training set selection process.
83.
A.
Grisafi
and
M.
Ceriotti
,
J. Chem. Phys.
151
,
204105
(
2019
).
84.
T.
Bereau
,
R. A.
DiStasio
, Jr.
,
A.
Tkatchenko
, and
O. A.
von Lilienfeld
,
J. Chem. Phys.
148
,
241706
(
2018
).

Supplementary Material

You do not currently have access to this content.