We analyze the phase-space compression, characteristic of all deterministic, dissipative systems for an inhomogeneous boundary-driven shear fluid via nonequilibrium molecular dynamics simulations. We find that, although the full system undergoes a phase space contraction, the marginal distribution of the fluid particles is described by a smooth, volume preserving probability density function. This is the case for most thermodynamic states of physical interest. Hence, we show that the models currently employed to investigate inhomogeneous fluids in a nonequilibrium steady state, in which only walls are thermostatted, generate a non-singular distribution for the fluid.
REFERENCES
1.
D. J.
Evans
and L.
Rondoni
, “Comments on the entropy of nonequilibrium steady states
,” J. Stat. Phys.
109
, 895
–920
(2002
).2.
P. J.
Daivis
and B. D.
Todd
, “A simple, direct derivation and proof of the validity of the SLLOD equations of motion for generalized homogeneous flows
,” J. Chem. Phys.
124
, 194103
(2006
).3.
D. J.
Evans
and G. P.
Morriss
, Statistical Mechanics of Nonequilibrium Liquids
(Academic
, London
, 1990
).4.
B. D.
Todd
and P. J.
Daivis
, Nonequilibrium Molecular Dynamics: Theory, Algorithms and Applications
(Cambridge University Press
, 2017
).5.
G. P.
Morriss
, “The information dimension of the nonequilibrium distribution function
,” Phys. Lett. A
122
, 236
–240
(1987
).6.
W. G.
Hoover
, H. A.
Posch
, and C. G.
Hoover
, “Fractal dimension of steady nonequilibrium flows
,” Chaos
2
, 245
–252
(1992
).7.
G. P.
Morriss
, “Dimensional contraction in nonequilibrium systems
,” Phys. Lett. A
134
, 307
–313
(1989
).8.
B. L.
Holian
, W. G.
Hoover
, and H. A.
Posch
, “Resolution of Loschmidt’s paradox: The origin of irreversible behavior in reversible atomistic dynamics
,” Phys. Rev. Lett.
59
, 10
–13
(1987
).9.
D. J.
Evans
, E. G. D.
Cohen
, and G. P.
Morriss
, “Probability of second law violations in shearing steady states
,” Phys. Rev. Lett.
71
, 2401
–2404
(1993
).10.
D. J.
Evans
and D. J.
Searles
, “Equilibrium microstates which generate second law violating steady states
,” Phys. Rev. E
50
, 1645
–1648
(1994
).11.
D. J.
Evans
and D. J.
Searles
, “Steady states, invariant measures, and response theory
,” Phys. Rev. E
52
, 5839
–5848
(1995
).12.
G.
Gallavotti
and E. G. D.
Cohen
, “Dynamical ensembles in nonequilibrium statistical mechanics
,” Phys. Rev. Lett.
74
, 2694
–2697
(1995
).13.
D. J.
Evans
, D. J.
Searles
, and L.
Rondoni
, “Application of the Gallavotti-Cohen fluctuation relation to thermostated steady states near equilibrium
,” Phys. Rev. E
71
, 056120
(2005
).14.
T.
Gilbert
and J. R.
Dorfman
, “Entropy production: From open volume-preserving to dissipative systems
,” J. Stat. Phys.
96
, 225
–269
(1999
).15.
R. C.
Tolman
, The Principles of Statistical Mechanics
(Oxford University Press
, Oxford
, 1955
).16.
L.
Rondoni
and E. G. D.
Cohen
, “Gibbs entropy and irreversible thermodynamics
,” Nonlinearity
13
, 1905
–1924
(2000
); arXiv:9908367 [cond-mat].17.
W. G.
Hoover
, D. J.
Evans
, H. A.
Posch
, B. L.
Holian
, and G. P.
Morriss
, “Comment on ‘Toward a statistical thermodynamics of steady states
,’” Phys. Rev. Lett.
80
, 4103
(1998
).18.
M. E.
Tuckerman
, C. J.
Mundy
, and M. L.
Klein
, “Tuckerman et al. reply
,” Phys. Rev. Lett.
80
, 4105
–4106
(1998
).19.
M. E.
Tuckerman
, C. J.
Mundy
, and G. J.
Martyna
, “On the classical statistical mechanics of non-Hamiltonian systems
,” Europhys. Lett.
45
, 149
–155
(1999
).20.
M. E.
Tuckerman
, C. J.
Mundy
, and M. L.
Klein
, “Toward a statistical thermodynamics of steady states
,” Phys. Rev. Lett.
78
, 2042
–2045
(1997
).21.
P.
Minary
, G. J.
Martyna
, and M. E.
Tuckerman
, “Algorithms and novel applications based on the isokinetic ensemble. I. Biophysical and path integral molecular dynamics
,” J. Chem. Phys.
118
, 2510
–2526
(2003
).22.
L.
Lue
, O. G.
Jepps
, J.
Delhommelle
, and D. J.
Evans
, “Configurational thermostats for molecular systems
,” Mol. Phys.
100
, 2387
–2395
(2002
).23.
C.
Wagner
, R.
Klages
, and G.
Nicolis
, “Thermostating by deterministic scattering: Heat and shear flow
,” Phys. Rev. E
60
, 1401
–1411
(1999
).24.
K.
Rateitschak
, R.
Klages
, and G.
Nicolis
, “Thermostating by deterministic scattering: The periodic Lorentz gas
,” J. Stat. Phys.
99
, 1339
–1364
(2000
).25.
R.
Klages
, K.
Rateitschak
, and G.
Nicolis
, “Thermostating by deterministic scattering: Construction of nonequilibrium steady states
,” Phys. Rev. Lett.
84
, 4268
–4271
(2000
).26.
N. I.
Chernov
and J. L.
Lebowitz
, “Stationary nonequilibrium states in boundary-driven Hamiltonian systems: Shear flow
,” J. Stat. Phys.
86
, 953
–990
(1997
).27.
J. L.
Lebowitz
and H.
Spohn
, “Transport properties of the Lorentz gas: Fourier’s law
,” J. Stat. Phys.
19
, 633
–654
(1978
).28.
H.
van Beijeren
and J. R.
Dorfman
, “On thermostats and entropy production
,” Physica A
279
, 21
–29
(2000
).29.
O. G.
Jepps
and L.
Rondoni
, “Deterministic thermostats, theories of nonequilibrium systems and parallels with the ergodic condition
,” J. Phys. A: Math. Theor.
43
, 133001
(2010
).30.
C. P.
Dettmann
and G. P.
Morriss
, “Proof of Lyapunov exponent pairing for systems at constant kinetic energy
,” Phys. Rev. E
53
, R5545
–R5548
(1996
).31.
H. A.
Posch
and W. G.
Hoover
, “Nonequilibrium molecular dynamics of classical fluids
,” in Molecular Liquids: New Perspectives in Physics and Chemistry
, edited by J. J. C.
Teixeira-Dias
(Springer Netherlands
, Dordrecht
, 1992
), pp. 527
–547
.32.
K.
Aoki
and D.
Kusnezov
, “Lyapunov exponents and the extensivity of dimensional loss for systems in thermal gradients
,” Phys. Rev. E
68
, 056204
(2003
).33.
H. A.
Posch
and W. G.
Hoover
, “Large-system phase-space dimensionality loss in stationary heat flows
,” Physica D
187
, 281
–293
(2004
).34.
H. A.
Posch
and W. G.
Hoover
, “Heat conduction in one-dimensional chains and nonequilibrium Lyapunov spectrum
,” Phys. Rev. E
58
, 4344
–4350
(1998
).35.
S.
Bernardi
, B. D.
Todd
, J. S.
Hansen
, D. J.
Searles
, and F.
Frascoli
, “Lyapunov spectra and conjugate-pairing rule for confined atomic fluids
,” J. Chem. Phys.
132
, 244508
(2010
).36.
S.
Bernardi
, B. D.
Todd
, and D. J.
Searles
, “Thermostating highly confined fluids
,” J. Chem. Phys.
132
, 244706
(2010
).37.
J. D.
Weeks
, D.
Chandler
, and H. C.
Andersen
, “Role of repulsive forces in determining the equilibrium structure of simple liquids
,” J. Chem. Phys.
54
, 5237
–5247
(1971
).38.
P.
Frederickson
, J. L.
Kaplan
, E. D.
Yorke
, and J. A.
Yorke
, “The Liapunov dimension of strange attractors
,” J. Differ. Equations
49
, 185
–207
(1983
).39.
P.
Grassberger
and I.
Procaccia
, “Measuring the strangeness of strange attractors
,” Physica D
9
, 189
–208
(1983
).40.
P.
Grassberger
and I.
Procaccia
, “Characterization of strange attractors
,” Phys. Rev. Lett.
50
, 346
–349
(1983
).41.
P.
Grassberger
, “Generalized dimensions of strange attractors
,” Phys. Lett. A
97
, 227
–230
(1983
).42.
J.-P.
Eckmann
and D.
Ruelle
, “Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems
,” Physica D
56
, 185
–187
(1992
).43.
M. P.
Allen
and D. J.
Tildesley
, Computer Simulation of Liquids
(Oxford University Press
, Oxford
, 1987
).44.
K. P.
Travis
, B. D.
Todd
, and D. J.
Evans
, “Departure from Navier–Stokes hydrodynamics in confined liquids
,” Phys. Rev. E
55
, 4288
–4295
(1997
).© 2021 Author(s).
2021
Author(s)
You do not currently have access to this content.