We analyze the phase-space compression, characteristic of all deterministic, dissipative systems for an inhomogeneous boundary-driven shear fluid via nonequilibrium molecular dynamics simulations. We find that, although the full system undergoes a phase space contraction, the marginal distribution of the fluid particles is described by a smooth, volume preserving probability density function. This is the case for most thermodynamic states of physical interest. Hence, we show that the models currently employed to investigate inhomogeneous fluids in a nonequilibrium steady state, in which only walls are thermostatted, generate a non-singular distribution for the fluid.

1.
D. J.
Evans
and
L.
Rondoni
, “
Comments on the entropy of nonequilibrium steady states
,”
J. Stat. Phys.
109
,
895
920
(
2002
).
2.
P. J.
Daivis
and
B. D.
Todd
, “
A simple, direct derivation and proof of the validity of the SLLOD equations of motion for generalized homogeneous flows
,”
J. Chem. Phys.
124
,
194103
(
2006
).
3.
D. J.
Evans
and
G. P.
Morriss
,
Statistical Mechanics of Nonequilibrium Liquids
(
Academic
,
London
,
1990
).
4.
B. D.
Todd
and
P. J.
Daivis
,
Nonequilibrium Molecular Dynamics: Theory, Algorithms and Applications
(
Cambridge University Press
,
2017
).
5.
G. P.
Morriss
, “
The information dimension of the nonequilibrium distribution function
,”
Phys. Lett. A
122
,
236
240
(
1987
).
6.
W. G.
Hoover
,
H. A.
Posch
, and
C. G.
Hoover
, “
Fractal dimension of steady nonequilibrium flows
,”
Chaos
2
,
245
252
(
1992
).
7.
G. P.
Morriss
, “
Dimensional contraction in nonequilibrium systems
,”
Phys. Lett. A
134
,
307
313
(
1989
).
8.
B. L.
Holian
,
W. G.
Hoover
, and
H. A.
Posch
, “
Resolution of Loschmidt’s paradox: The origin of irreversible behavior in reversible atomistic dynamics
,”
Phys. Rev. Lett.
59
,
10
13
(
1987
).
9.
D. J.
Evans
,
E. G. D.
Cohen
, and
G. P.
Morriss
, “
Probability of second law violations in shearing steady states
,”
Phys. Rev. Lett.
71
,
2401
2404
(
1993
).
10.
D. J.
Evans
and
D. J.
Searles
, “
Equilibrium microstates which generate second law violating steady states
,”
Phys. Rev. E
50
,
1645
1648
(
1994
).
11.
D. J.
Evans
and
D. J.
Searles
, “
Steady states, invariant measures, and response theory
,”
Phys. Rev. E
52
,
5839
5848
(
1995
).
12.
G.
Gallavotti
and
E. G. D.
Cohen
, “
Dynamical ensembles in nonequilibrium statistical mechanics
,”
Phys. Rev. Lett.
74
,
2694
2697
(
1995
).
13.
D. J.
Evans
,
D. J.
Searles
, and
L.
Rondoni
, “
Application of the Gallavotti-Cohen fluctuation relation to thermostated steady states near equilibrium
,”
Phys. Rev. E
71
,
056120
(
2005
).
14.
T.
Gilbert
and
J. R.
Dorfman
, “
Entropy production: From open volume-preserving to dissipative systems
,”
J. Stat. Phys.
96
,
225
269
(
1999
).
15.
R. C.
Tolman
,
The Principles of Statistical Mechanics
(
Oxford University Press
,
Oxford
,
1955
).
16.
L.
Rondoni
and
E. G. D.
Cohen
, “
Gibbs entropy and irreversible thermodynamics
,”
Nonlinearity
13
,
1905
1924
(
2000
); arXiv:9908367 [cond-mat].
17.
W. G.
Hoover
,
D. J.
Evans
,
H. A.
Posch
,
B. L.
Holian
, and
G. P.
Morriss
, “
Comment on ‘Toward a statistical thermodynamics of steady states
,’”
Phys. Rev. Lett.
80
,
4103
(
1998
).
18.
M. E.
Tuckerman
,
C. J.
Mundy
, and
M. L.
Klein
, “
Tuckerman et al. reply
,”
Phys. Rev. Lett.
80
,
4105
4106
(
1998
).
19.
M. E.
Tuckerman
,
C. J.
Mundy
, and
G. J.
Martyna
, “
On the classical statistical mechanics of non-Hamiltonian systems
,”
Europhys. Lett.
45
,
149
155
(
1999
).
20.
M. E.
Tuckerman
,
C. J.
Mundy
, and
M. L.
Klein
, “
Toward a statistical thermodynamics of steady states
,”
Phys. Rev. Lett.
78
,
2042
2045
(
1997
).
21.
P.
Minary
,
G. J.
Martyna
, and
M. E.
Tuckerman
, “
Algorithms and novel applications based on the isokinetic ensemble. I. Biophysical and path integral molecular dynamics
,”
J. Chem. Phys.
118
,
2510
2526
(
2003
).
22.
L.
Lue
,
O. G.
Jepps
,
J.
Delhommelle
, and
D. J.
Evans
, “
Configurational thermostats for molecular systems
,”
Mol. Phys.
100
,
2387
2395
(
2002
).
23.
C.
Wagner
,
R.
Klages
, and
G.
Nicolis
, “
Thermostating by deterministic scattering: Heat and shear flow
,”
Phys. Rev. E
60
,
1401
1411
(
1999
).
24.
K.
Rateitschak
,
R.
Klages
, and
G.
Nicolis
, “
Thermostating by deterministic scattering: The periodic Lorentz gas
,”
J. Stat. Phys.
99
,
1339
1364
(
2000
).
25.
R.
Klages
,
K.
Rateitschak
, and
G.
Nicolis
, “
Thermostating by deterministic scattering: Construction of nonequilibrium steady states
,”
Phys. Rev. Lett.
84
,
4268
4271
(
2000
).
26.
N. I.
Chernov
and
J. L.
Lebowitz
, “
Stationary nonequilibrium states in boundary-driven Hamiltonian systems: Shear flow
,”
J. Stat. Phys.
86
,
953
990
(
1997
).
27.
J. L.
Lebowitz
and
H.
Spohn
, “
Transport properties of the Lorentz gas: Fourier’s law
,”
J. Stat. Phys.
19
,
633
654
(
1978
).
28.
H.
van Beijeren
and
J. R.
Dorfman
, “
On thermostats and entropy production
,”
Physica A
279
,
21
29
(
2000
).
29.
O. G.
Jepps
and
L.
Rondoni
, “
Deterministic thermostats, theories of nonequilibrium systems and parallels with the ergodic condition
,”
J. Phys. A: Math. Theor.
43
,
133001
(
2010
).
30.
C. P.
Dettmann
and
G. P.
Morriss
, “
Proof of Lyapunov exponent pairing for systems at constant kinetic energy
,”
Phys. Rev. E
53
,
R5545
R5548
(
1996
).
31.
H. A.
Posch
and
W. G.
Hoover
, “
Nonequilibrium molecular dynamics of classical fluids
,” in
Molecular Liquids: New Perspectives in Physics and Chemistry
, edited by
J. J. C.
Teixeira-Dias
(
Springer Netherlands
,
Dordrecht
,
1992
), pp.
527
547
.
32.
K.
Aoki
and
D.
Kusnezov
, “
Lyapunov exponents and the extensivity of dimensional loss for systems in thermal gradients
,”
Phys. Rev. E
68
,
056204
(
2003
).
33.
H. A.
Posch
and
W. G.
Hoover
, “
Large-system phase-space dimensionality loss in stationary heat flows
,”
Physica D
187
,
281
293
(
2004
).
34.
H. A.
Posch
and
W. G.
Hoover
, “
Heat conduction in one-dimensional chains and nonequilibrium Lyapunov spectrum
,”
Phys. Rev. E
58
,
4344
4350
(
1998
).
35.
S.
Bernardi
,
B. D.
Todd
,
J. S.
Hansen
,
D. J.
Searles
, and
F.
Frascoli
, “
Lyapunov spectra and conjugate-pairing rule for confined atomic fluids
,”
J. Chem. Phys.
132
,
244508
(
2010
).
36.
S.
Bernardi
,
B. D.
Todd
, and
D. J.
Searles
, “
Thermostating highly confined fluids
,”
J. Chem. Phys.
132
,
244706
(
2010
).
37.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
, “
Role of repulsive forces in determining the equilibrium structure of simple liquids
,”
J. Chem. Phys.
54
,
5237
5247
(
1971
).
38.
P.
Frederickson
,
J. L.
Kaplan
,
E. D.
Yorke
, and
J. A.
Yorke
, “
The Liapunov dimension of strange attractors
,”
J. Differ. Equations
49
,
185
207
(
1983
).
39.
P.
Grassberger
and
I.
Procaccia
, “
Measuring the strangeness of strange attractors
,”
Physica D
9
,
189
208
(
1983
).
40.
P.
Grassberger
and
I.
Procaccia
, “
Characterization of strange attractors
,”
Phys. Rev. Lett.
50
,
346
349
(
1983
).
41.
P.
Grassberger
, “
Generalized dimensions of strange attractors
,”
Phys. Lett. A
97
,
227
230
(
1983
).
42.
J.-P.
Eckmann
and
D.
Ruelle
, “
Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems
,”
Physica D
56
,
185
187
(
1992
).
43.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
Oxford
,
1987
).
44.
K. P.
Travis
,
B. D.
Todd
, and
D. J.
Evans
, “
Departure from Navier–Stokes hydrodynamics in confined liquids
,”
Phys. Rev. E
55
,
4288
4295
(
1997
).
You do not currently have access to this content.