All current formulations of nonequilibrium thermodynamics of open chemical reaction networks rely on the assumption of non-interacting species. We develop a general theory that accounts for interactions between chemical species within a mean-field approach using activity coefficients. Thermodynamic consistency requires that rate equations do not obey standard mass-action kinetics but account for the interactions with concentration dependent kinetic constants. Many features of the ideal formulations are recovered. Crucially, the thermodynamic potential and the forces driving non-ideal chemical systems out of equilibrium are identified. Our theory is general and holds for any mean-field expression of the interactions leading to lower bounded free energies.

1.
I.
Prigogine
,
Introduction to Thermodynamics of Irreversible Processes
, 2nd ed. (
Interscience Publishers
,
New York
,
1961
).
2.
S. R.
de Groot
and
P.
Mazur
,
Non-Equilibrium Thermodynamics
(
Dover
,
1984
).
3.
T. L.
Hill
,
Free Energy Transduction in Biology
(
Academic Press
,
New York
,
1977
).
4.
J.
Schnakenberg
, “
Network theory of microscopic and macroscopic behavior of master equation systems
,”
Rev. Mod. Phys.
48
,
571
585
(
1976
).
5.
L.
Jiu-li
,
C.
Van den Broeck
, and
G.
Nicolis
, “
Stability criteria and fluctuations around nonequilibrium states
,”
Z. Phys. B: Condens. Matter
56
,
165
170
(
1984
).
6.
C. Y.
Mou
,
J. l.
Luo
, and
G.
Nicolis
, “
Stochastic thermodynamics of nonequilibrium steady states in chemical reaction systems
,”
J. Chem. Phys.
84
,
7011
7017
(
1986
).
7.
J.
Ross
,
K. L. C.
Hunt
, and
P. M.
Hunt
, “
Thermodynamics far from equilibrium: Reactions with multiple stationary states
,”
J. Chem. Phys.
88
,
2719
2729
(
1988
).
8.
C.
Jarzynski
, “
Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale
,”
Annu. Rev. Condens. Matter Phys.
2
,
329
351
(
2011
).
9.
U.
Seifert
, “
Stochastic thermodynamics, fluctuation theorems and molecular machines
,”
Rep. Prog. Phys.
75
,
126001
(
2012
).
10.
C. V.
den Broeck
and
M.
Esposito
, “
Ensemble and trajectory thermodynamics: A brief introduction
,”
Physica A
418
,
6
16
(
2015
).
11.
Dilip
Kondepudi
and
Ilya
Prigogine
,
Modern Thermodynamics: From Heat Engines to Dissipative Structures
, 2nd ed. (
Wiley
,
2015
).
12.
P.
Gaspard
, “
Fluctuation theorem for nonequilibrium reactions
,”
J. Chem. Phys.
120
,
8898
8905
(
2004
).
13.
T.
Schmiedl
and
U.
Seifert
, “
Stochastic thermodynamics of chemical reaction networks
,”
J. Chem. Phys.
126
,
044101
(
2007
).
14.
R.
Rao
and
M.
Esposito
, “
Conservation laws and work fluctuation relations in chemical reaction networks
,”
J. Chem. Phys.
149
,
245101
(
2018
).
15.
H.
Qian
and
D. A.
Beard
, “
Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium
,”
Biophys. Chem.
114
,
213
220
(
2005
).
16.
M.
Polettini
and
M.
Esposito
, “
Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws
,”
J. Chem. Phys.
141
,
024117
(
2014
).
17.
R.
Rao
and
M.
Esposito
, “
Nonequilibrium thermodynamics of chemical reaction networks: Wisdom from stochastic thermodynamics
,”
Phys. Rev. X
6
,
041064
(
2016
).
18.
G.
Falasco
,
R.
Rao
, and
M.
Esposito
, “
Information thermodynamics of Turing patterns
,”
Phys. Rev. Lett.
121
,
108301
(
2018
).
19.
F.
Avanzini
,
G.
Falasco
, and
M.
Esposito
, “
Thermodynamics of chemical waves
,”
J. Chem. Phys.
151
,
234103
(
2019
).
20.
F.
Avanzini
,
G.
Falasco
, and
M.
Esposito
, “
Chemical cloaking
,”
Phys. Rev. E
101
,
060102
(
2020
).
21.
D.
Andrieux
and
P.
Gaspard
, “
Nonequilibrium generation of information in copolymerization processes
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
9516
9521
(
2008
).
22.
A.
Blokhuis
and
D.
Lacoste
, “
Length and sequence relaxation of copolymers under recombination reactions
,”
J. Chem. Phys.
147
,
094905
(
2017
).
23.
P.
Gaspard
, “
Template-directed growth of copolymers
,”
Chaos
30
,
043114
(
2020
).
24.
R.
Rao
,
D.
Lacoste
, and
M.
Esposito
, “
Glucans monomer-exchange dynamics as an open chemical network
,”
J. Chem. Phys.
143
,
244903
(
2015
).
25.
P.
Gaspard
, “
Stochastic approach to entropy production in chemical chaos
,”
Chaos
30
,
113103
(
2020
).
26.
K.
Yoshimura
and
S.
Ito
, “
Information geometric inequalities of chemical thermodynamics
,” arXiv:2005.08444 [cond-mat.stat-mech] (
2020
).
27.
J. H.
Fritz
,
B.
Nguyen
, and
U.
Seifert
, “
Stochastic thermodynamics of chemical reactions coupled to finite reservoirs: A case study for the Brusselator
,”
J. Chem. Phys.
152
,
235101
(
2020
).
28.
A.
Blokhuis
,
D.
Lacoste
, and
P.
Gaspard
, “
Reaction kinetics in open reactors and serial transfers between closed reactors
,”
J. Chem. Phys.
148
,
144902
(
2018
).
29.
R.
Hołyst
and
A.
Poniewierski
,
Thermodynamics for Chemists, Physicists and Engineers
(
Springer
,
2012
).
30.
M.
Boudart
,
Kinetics of Chemical Processes
(
Prentice Hall
,
1968
).
31.
K. J.
Laidler
,
Chemical Kinetics
(
HarperCollins Publishers
,
1987
).
32.
J. B.
Butt
,
Reaction Kinetics and Reactor Design
(
Marcel Dekker, Inc.
,
1999
).
33.
D.
Voet
and
J. G.
Voet
,
Biochemistry
(
John Wiley & Sons
,
2010
).
34.
A. J.
Bard
and
L. R.
Faulkner
,
Electrochemical Methods: Fundamentals and Applications
, 2nd ed. (
Wiley
,
2001
).
35.
G.
Svehla
, “
Nomenclature of kinetic methods of analysis (IUPAC Recommendations 1993)
,”
Pure Appl. Chem.
65
,
2291
(
1993
).
36.
M.
Pekař
, “
Thermodynamics and foundations of mass-action kinetics
,”
Prog. React. Kinet. Mech.
30
,
3
113
(
2005
).
37.
K.
Kinosita
,
R.
Yasuda
,
H.
Noji
, and
K.
Adachi
, “
A rotary molecular motor that can work at near 100% efficiency
,”
Philos. Trans. R. Soc. London, Ser. B
355
,
473
489
(
2000
).
38.
R.
Rao
and
M.
Esposito
, “
Conservation laws shape dissipation
,”
New J. Phys.
20
,
023007
(
2018
).
39.
S.
Schuster
and
R.
Schuster
, “
A generalization of Wegscheider’s condition. Implications for properties of steady states and for quasi-steady-state approximation
,”
J. Math. Chem.
3
,
25
42
(
1989
).
40.
F.
Horn
and
R.
Jackson
, “
General mass action kinetics
,”
Arch. Ration. Mech. Anal.
47
,
81
116
(
1972
).
41.
D.
McQuarrie
,
Statistical Mechanics
(
Harper & Row
,
1975
).
42.
C.
Chipot
and
A.
Pohorille
,
Free Energy Calculations
(
Springer
,
Berlin
,
2007
).
43.
T.
Lelièvre
,
M.
Rousset
, and
G.
Stoltz
,
Free Energy Computations: A Mathematical Perspective
(
Imperial College Press
,
2010
).
44.
R.
Holyst
and
A.
Poniewierski
,
Thermodynamics for Chemists, Physicists and Engineers
(
Springer
,
Dordrecht, The Netherlands
,
2012
).
45.
G.
Magnus
and
J.
Keizer
, “
Minimal model of beta-cell mitochondrial Ca2+ handling
,”
Am. J. Physiol.: Cell Physiol.
273
,
C717
C733
(
1997
).
46.
G.
Magnus
and
J.
Keizer
, “
Model of β-cell mitochondrial calcium handling and electrical activity. I. Cytoplasmic variables
,”
Am. J. Physiol.: Cell Physiol.
274
,
C1158
C1173
(
1998
).
47.
C. P.
Fall
and
J. E.
Keizer
, “
Mitochondrial modulation of intracellular Ca2+ signaling
,”
J. Theor. Biol.
210
,
151
165
(
2001
).
48.
A.
Wachtel
,
R.
Rao
, and
M.
Esposito
, “
Thermodynamically consistent coarse graining of biocatalysts beyond Michaelis–Menten
,”
New J. Phys.
20
,
042002
(
2018
).
49.
F.
Avanzini
,
G.
Falasco
, and
M.
Esposito
, “
Thermodynamics of non-elementary chemical reaction networks
,”
New J. Phys.
22
,
093040
(
2020
).
You do not currently have access to this content.