Intermolecular bonds are weak compared to covalent bonds, but they are strong enough to influence the properties of large molecular systems. In this work, we investigate how strong light–matter coupling inside an optical cavity can modify intermolecular forces and illustrate the varying necessity of correlation in their description. The electromagnetic field inside the cavity can modulate the ground state properties of weakly bound complexes. Tuning the field polarization and cavity frequency, the interactions can be stabilized or destabilized, and electron densities, dipole moments, and polarizabilities can be altered. We demonstrate that electron–photon correlation is fundamental to describe intermolecular interactions in strong light–matter coupling. This work proposes optical cavities as a novel tool to manipulate and control ground state properties, solvent effects, and intermolecular interactions for molecules and materials.

1.
P.
Atkins
and
J.
de Paula
,
Physical Chemistry
(
OUP Oxford
,
2016
).
2.
C.
Heald
and
H. W.
Thompson
, “
Intermolecular forces and solvent effects. III
,”
Proc. R. Soc. London, Ser. A
268
,
89
99
(
1962
).
3.
J. M.
Garver
,
Y.-R.
Fang
,
N.
Eyet
,
S. M.
Villano
,
V. M.
Bierbaum
, and
K. C.
Westaway
, “
A direct comparison of reactivity and mechanism in the gas phase and in solution
,”
J. Am. Chem. Soc.
132
,
3808
3814
(
2010
).
4.
D. L.
Nelson
and
M. M.
Cox
,
Lehninger Principles of Biochemistry
, 6th ed. (
Macmillan
,
2012
).
5.
Y.
Cao
,
V.
Fatemi
,
S.
Fang
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Kaxiras
, and
P.
Jarillo-Herrero
, “
Unconventional superconductivity in magic-angle graphene superlattices
,”
Nature
556
,
43
50
(
2018
).
6.
A.
Kerelsky
,
L. J.
McGilly
,
D. M.
Kennes
,
L.
Xian
,
M.
Yankowitz
,
S.
Chen
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Hone
,
C.
Dean
,
A.
Rubio
, and
A. N.
Pasupathy
, “
Maximized electron interactions at the magic angle in twisted bilayer graphene
,”
Nature
572
,
95
100
(
2019
).
7.
H. M.
Hill
, “
Twisted bilayer graphene enters a new phase
,”
Phys. Today
73
(
1
),
18
(
2020
).
8.
L.
Xian
,
D. M.
Kennes
,
N.
Tancogne-Dejean
,
M.
Altarelli
, and
A.
Rubio
, “
Multiflat bands and strong correlations in twisted bilayer boron nitride: Doping-induced correlated insulator and superconductor
,”
Nano Lett.
19
,
4934
4940
(
2019
).
9.
J. A.
Hutchison
,
T.
Schwartz
,
C.
Genet
,
E.
Devaux
, and
T. W.
Ebbesen
, “
Modifying chemical landscapes by coupling to vacuum fields
,”
Angew. Chem., Int. Ed.
51
,
1592
1596
(
2012
).
10.
A.
Thomas
,
J.
George
,
A.
Shalabney
,
M.
Dryzhakov
,
S. J.
Varma
,
J.
Moran
,
T.
Chervy
,
X.
Zhong
,
E.
Devaux
,
C.
Genet
 et al, “
Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field
,”
Angew. Chem., Int. Ed.
128
,
11634
11638
(
2016
).
11.
B.
Munkhbat
,
M.
Wersäll
,
D. G.
Baranov
,
T. J.
Antosiewicz
, and
T.
Shegai
, “
Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas
,”
Sci. Adv.
4
,
eaas9552
(
2018
).
12.
A.
Thomas
,
L.
Lethuillier-Karl
,
K.
Nagarajan
,
R. M. A.
Vergauwe
,
J.
George
,
T.
Chervy
,
A.
Shalabney
,
E.
Devaux
,
C.
Genet
,
J.
Moran
, and
T. W.
Ebbesen
, “
Tilting a ground-state reactivity landscape by vibrational strong coupling
,”
Science
363
,
615
619
(
2019
).
13.
H.
Hiura
,
A.
Shalabney
, and
J.
George
, “
Vacuum-field catalysis: Accelerated reactions by vibrational ultra strong coupling
,” chemRxiv:7234721.v4 (
2018
).
14.
J.
Lather
,
P.
Bhatt
,
A.
Thomas
,
T. W.
Ebbesen
, and
J.
George
, “
Cavity catalysis by cooperative vibrational strong coupling of reactant and solvent molecules
,”
Angew. Chem., Int. Ed.
58
,
10635
10638
(
2019
).
15.
F.
Herrera
and
F. C.
Spano
, “
Cavity-controlled chemistry in molecular ensembles
,”
Phys. Rev. Lett.
116
,
238301
(
2016
).
16.
J. A.
Campos-Gonzalez-Angulo
,
R. F.
Ribeiro
, and
J.
Yuen-Zhou
, “
Resonant catalysis of thermally activated chemical reactions with vibrational polaritons
,”
Nat. Commun.
10
,
4685
(
2019
).
17.
V. M.
Agranovich
,
M.
Litinskaia
, and
D. G.
Lidzey
, “
Cavity polaritons in microcavities containing disordered organic semiconductors
,”
Phys. Rev. B
67
,
085311
(
2003
).
18.
D.
Wang
,
H.
Kelkar
,
D.
Martin-Cano
,
T.
Utikal
,
S.
Götzinger
, and
V.
Sandoghdar
, “
Coherent coupling of a single molecule to a scanning Fabry-Perot microcavity
,”
Phys. Rev. X
7
,
021014
(
2017
).
19.
O. S.
Ojambati
,
R.
Chikkaraddy
,
W. D.
Deacon
,
M.
Horton
,
D.
Kos
,
V. A.
Turek
,
U. F.
Keyser
, and
J. J.
Baumberg
, “
Quantum electrodynamics at room temperature coupling a single vibrating molecule with a plasmonic nanocavity
,”
Nat. Commun.
10
,
1049
(
2019
).
20.
M.
Wersäll
,
J.
Cuadra
,
T. J.
Antosiewicz
,
S.
Balci
, and
T.
Shegai
, “
Observation of mode splitting in photoluminescence of individual plasmonic nanoparticles strongly coupled to molecular excitons
,”
Nano Lett.
17
,
551
558
(
2017
).
21.
E.
Orgiu
,
J.
George
,
J. A.
Hutchison
,
E.
Devaux
,
J. F.
Dayen
,
B.
Doudin
,
F.
Stellacci
,
C.
Genet
,
J.
Schachenmayer
,
C.
Genes
,
G.
Pupillo
,
P.
Samorì
, and
T. W.
Ebbesen
, “
Conductivity in organic semiconductors hybridized with the vacuum field
,”
Nat. Mater.
14
,
1123
1129
(
2015
).
22.
X.
Zhong
,
T.
Chervy
,
L.
Zhang
,
A.
Thomas
,
J.
George
,
C.
Genet
,
J. A.
Hutchison
, and
T. W.
Ebbesen
, “
Energy transfer between spatially separated entangled molecules
,”
Angew. Chem., Int. Ed.
56
,
9034
9038
(
2017
).
23.
D.
Hagenmüller
,
J.
Schachenmayer
,
S.
Schütz
,
C.
Genes
, and
G.
Pupillo
, “
Cavity-enhanced transport of charge
,”
Phys. Rev. Lett.
119
,
223601
(
2017
).
24.
R.
Sáez-Blázquez
,
J.
Feist
,
A. I.
Fernández-Domínguez
, and
F. J.
García-Vidal
, “
Organic polaritons enable local vibrations to drive long-range energy transfer
,”
Phys. Rev. B
97
,
241407
(
2018
).
25.
C.
Schäfer
,
M.
Ruggenthaler
,
H.
Appel
, and
A.
Rubio
, “
Modification of excitation and charge transfer in cavity quantum-electrodynamical chemistry
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
4883
4892
(
2019
).
26.
G.
Groenhof
,
C.
Climent
,
J.
Feist
,
D.
Morozov
, and
J. J.
Toppari
, “
Tracking polariton relaxation with multiscale molecular dynamics simulations
,”
J. Phys. Chem. Lett.
10
,
5476
5483
(
2019
).
27.
M.
Hertzog
,
M.
Wang
,
J.
Mony
, and
K.
Börjesson
, “
Strong light–matter interactions: A new direction within chemistry
,”
Chem. Soc. Rev.
48
,
937
961
(
2019
).
28.
H.
Hübener
,
U.
De Giovannini
,
C.
Schäfer
,
J.
Andberger
,
M.
Ruggenthaler
,
J.
Faist
, and
A.
Rubio
, “
Engineering quantum materials with chiral optical cavities
,”
Nat. Mater.
(
2020
).
29.
A.
Thomas
,
E.
Devaux
,
K.
Nagarajan
,
T.
Chervy
,
M.
Seidel
,
D.
Hagenmüller
,
S.
Schütz
,
J.
Schachenmayer
,
C.
Genet
,
G.
Pupillo
, and
T. W.
Ebbesen
, “
Exploring superconductivity under strong coupling with the vacuum electromagnetic field
,” arXiv:1911.01459 (
2019
).
30.
M. A.
Sentef
,
M.
Ruggenthaler
, and
A.
Rubio
, “
Cavity quantum-electrodynamical polaritonically enhanced electron-phonon coupling and its influence on superconductivity
,”
Sci. Adv.
4
,
eaau6969
(
2018
).
31.
F.
Schlawin
,
A.
Cavalleri
, and
D.
Jaksch
, “
Cavity-mediated electron-photon superconductivity
,”
Phys. Rev. Lett.
122
,
133602
(
2019
).
32.
R. H.
Dicke
, “
Coherence in spontaneous radiation processes
,”
Phys. Rev.
93
,
99
110
(
1954
).
33.
E. T.
Jaynes
and
F. W.
Cummings
, “
Comparison of quantum and semiclassical radiation theories with application to the beam maser
,”
Proc. IEEE
51
,
89
109
(
1963
).
34.
F. W.
Cummings
, “
Stimulated emission of radiation in a single mode
,”
Phys. Rev.
140
,
A1051
A1056
(
1965
).
35.
T.
Anoop
,
L.
Lethuillier-Karl
,
J.
Moran
, and
T.
Ebbesen
, “
Comment on ‘On the SN2 reactions modified in vibrational strong coupling experiments: Reaction mechanisms and vibrational mode assignments’
,’” chemRxiv:12982358 (
2020
).
36.
J.
Galego
,
C.
Climent
,
F. J.
Garcia-Vidal
, and
J.
Feist
, “
Cavity Casimir-Polder forces and their effects in ground-state chemical reactivity
,”
Phys. Rev. X
9
,
021057
(
2019
).
37.
F.
Herrera
, “
Photochemistry with quantum optics from a non-adiabatic quantum trajectory perspective
,”
Chem
6
,
7
9
(
2020
).
38.
X.
Li
,
A.
Mandal
, and
P.
Huo
, “
Resonance theory of vibrational strong couplings in polariton chemistry
,” chemrxiv.12915701.v1 (
2020
).
39.
I.
Vurgaftman
,
B. S.
Simpkins
,
A. D.
Dunkelberger
, and
J. C.
Owrutsky
, “
Negligible effect of vibrational polaritons on chemical reaction rates via the density of states pathway
,”
J. Phys. Chem. Lett.
11
,
3557
3562
(
2020
).
40.
B. W.
Shore
and
P. L.
Knight
, “
The Jaynes-Cummings model
,”
J. Mod. Opt.
40
,
1195
1238
(
1993
).
41.
M.
Ruggenthaler
,
J.
Flick
,
C.
Pellegrini
,
H.
Appel
,
I. V.
Tokatly
, and
A.
Rubio
, “
Quantum-electrodynamical density-functional theory: Bridging quantum optics and electronic-structure theory
,”
Phys. Rev. A
90
,
012508
(
2014
).
42.
T. S.
Haugland
,
E.
Ronca
,
E. F.
Kjønstad
,
A.
Rubio
, and
H.
Koch
, “
Coupled cluster theory for molecular polaritons: Changing ground and excited states
,”
Phys. Rev. X
10
,
041043
(
2020
).
43.
J.
Flick
,
C.
Schäfer
,
M.
Ruggenthaler
,
H.
Appel
, and
A.
Rubio
, “
Ab initio optimized effective potentials for real molecules in optical cavities: Photon contributions to the molecular ground state
,”
ACS Photonics
5
,
992
1005
(
2018
).
44.
S.
Latini
,
D.
Shin
,
S. A.
Sato
,
C.
Schäfer
,
U. D.
Giovannini
,
H.
Hübener
, and
A.
Rubio
, “
The ferroelectric photo-groundstate of SrTiO3: Cavity materials engineering
,” arXiv:2101.11313 (
2021
).
45.
E. A.
DePrince
, “
Cavity-modulated ionization potentials and electron affinities from quantum electrodynamics coupled-cluster theory
,” arXiv:2011.12768 (
2020
).
46.
D.
Sidler
,
C.
Schäfer
,
M.
Ruggenthaler
, and
A.
Rubio
, “
Polaritonic chemistry: Collective strong coupling implies strong local modification of chemical properties
,”
J. Phys. Chem. Lett.
12
,
508
516
(
2021
).
47.
S.
Grimme
, “
Density functional theory with London dispersion corrections
,”
WIREs Comput. Mol. Sci.
1
,
211
228
(
2011
).
48.
H.
Spohn
,
Dynamics of Charged Particles and Their Radiation Field
(
Cambridge University Press
,
2004
).
49.
C.
Cohen-Tannoudji
,
J.
Dupont-Roc
, and
G.
Grynberg
,
Photons and Atoms: Introduction to Quantum Electrodynamics
(
Wiley-VCH
,
1997
).
50.
E. A.
Power
and
S.
Zienau
, “
Coulomb gauge in non-relativistic quantum electro-dynamics and the shape of spectral lines
,”
Proc. R. Soc. London, Ser. A
251
,
427
454
(
1959
).
51.
C.
Schäfer
,
M.
Ruggenthaler
,
V.
Rokaj
, and
A.
Rubio
, “
Relevance of the quadratic diamagnetic and self-polarization terms in cavity quantum electrodynamics
,”
ACS Photonics
7
,
975
990
(
2020
).
52.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
John Wiley & Sons, Ltd.
,
Chichester, UK
,
2000
).
53.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford Science Publications
,
1989
).
54.
S. D.
Folkestad
,
E. F.
Kjønstad
,
R. H.
Myhre
,
J. H.
Andersen
,
A.
Balbi
,
S.
Coriani
,
T.
Giovannini
,
L.
Goletto
,
T. S.
Haugland
,
A.
Hutcheson
,
I.-M.
Høyvik
,
T.
Moitra
,
A. C.
Paul
,
M.
Scavino
,
A. S.
Skeidsvoll
,
Å. H.
Tveten
, and
H.
Koch
, “
eT 1.0: An open source electronic structure program with emphasis on coupled cluster and multilevel methods
,”
J. Chem. Phys.
152
,
184103
(
2020
).
55.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
56.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
57.
S.
Kümmel
and
J. P.
Perdew
, “
Optimized effective potential made simple: Orbital functionals, orbital shifts, and the exact Kohn-Sham exchange potential
,”
Phys. Rev. B
68
,
035103
(
2003
).
58.
C.
Pellegrini
,
J.
Flick
,
I. V.
Tokatly
,
H.
Appel
, and
A.
Rubio
, “
Optimized effective potential for quantum electrodynamical time-dependent density functional theory
,”
Phys. Rev. Lett.
115
,
093001
(
2015
).
59.
N.
Tancogne-Dejean
,
M. J. T.
Oliveira
,
X.
Andrade
,
H.
Appel
,
C. H.
Borca
,
G.
Le Breton
,
F.
Buchholz
,
A.
Castro
,
S.
Corni
,
A. A.
Correa
 et al, “
Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems
,”
J. Chem. Phys.
152
,
124119
(
2020
).
60.
P.
Atkins
and
R.
Friedman
,
Molecular Quantum Mechanics
(
OUP Oxford
,
2011
).
61.
D. P.
Craig
and
T.
Thirunamachandranm
,
Molecular Quantum Electrodynamics: An Introduction to Radiation-Molecule
(
Dover Publications, Inc.
,
Mineola, NY
,
1984
).
62.
S. Y.
Buhmann
,
Dispersion Forces I: Macroscopic Quantum Electrodynamics and Ground-State Casimir, Casimir–Polder and van der Waals Forces
(
Springer
,
2013
), Vol. 247.
63.
S.
Buhmann
,
Dispersion Forces II: Many-Body Effects, Excited Atoms, Finite Temperature and Quantum Friction
(
Springer
,
2013
), Vol. 248.
64.
A.
Salam
,
Non-Relativistic QED Theory of the van der Waals Dispersion Interaction
(
Springer
,
2016
).
65.
C.
Schäfer
,
M.
Ruggenthaler
, and
A.
Rubio
, “
Ab initio nonrelativistic quantum electrodynamics: Bridging quantum chemistry and quantum optics from weak to strong coupling
,”
Phys. Rev. A
98
,
043801
(
2018
).
66.
R.
Chikkaraddy
,
B.
De Nijs
,
F.
Benz
,
S. J.
Barrow
,
O. A.
Scherman
,
E.
Rosta
,
A.
Demetriadou
,
P.
Fox
,
O.
Hess
, and
J. J.
Baumberg
, “
Single-molecule strong coupling at room temperature in plasmonic nanocavities
,”
Nature
535
,
127
130
(
2016
).
67.
S.
De Liberato
, “
Virtual photons in the ground state of a dissipative system
,”
Nat. Commun.
8
,
1465
(
2017
).
68.
F.
London
, “
The general theory of molecular forces
,”
Trans. Faraday Soc.
33
,
8b
26
(
1937
).
69.
H.
Koch
,
O.
Christiansen
,
P.
Jørgensen
,
A. M.
Sanchez de Merás
, and
T.
Helgaker
, “
The CC3 model: An iterative coupled cluster approach including connected triples
,”
J. Chem. Phys.
106
,
1808
1818
(
1997
).
70.
M.
Urban
,
J.
Noga
,
S. J.
Cole
, and
R. J.
Bartlett
, “
Towards a full CCSDT model for electron correlation
,”
J. Chem. Phys.
83
,
4041
4046
(
1985
).
71.
E. A.
Power
and
T.
Thirunamachandran
, “
Quantum electrodynamics in a cavity
,”
Phys. Rev. A
25
,
2473
(
1982
).
72.
K.
Patkowski
, “
Recent developments in symmetry-adapted perturbation theory
,”
WIREs Comput. Mol. Sci.
10
,
e1452
(
2020
).
73.
M.
Prakash
,
K. G.
Samy
, and
V.
Subramanian
, “
Benzene–water (BZWn (n = 1–10)) clusters
,”
J. Phys. Chem. A
113
,
13845
13852
(
2009
).
74.
P.
Lazzeretti
, “
Assessment of aromaticity via molecular response properties
,”
Phys. Chem. Chem. Phys.
6
,
217
223
(
2004
).
75.
E.
Arunan
,
G. R.
Desiraju
,
R. A.
Klein
,
J.
Sadlej
,
S.
Scheiner
,
I.
Alkorta
,
D. C.
Clary
,
R. H.
Crabtree
,
J. J.
Dannenberg
,
P.
Hobza
,
H. G.
Kjaergaard
,
A. C.
Legon
,
B.
Mennucci
, and
D. J.
Nesbitt
, “
Definition of the hydrogen bond (IUPAC recommendations 2011)
,”
Pure Appl. Chem.
83
,
1637
1641
(
2011
).
76.
D.
Cappelletti
,
E.
Ronca
,
L.
Belpassi
,
F.
Tarantelli
, and
F.
Pirani
, “
Revealing charge-transfer effects in gas-phase water chemistry
,”
Acc. Chem. Res.
45
,
1571
1580
(
2012
).
77.
E.
Ronca
,
L.
Belpassi
, and
F.
Tarantelli
, “
A quantitative view of charge transfer in the hydrogen bond: The water dimer case
,”
ChemPhysChem
15
,
2682
2687
(
2014
).
78.
L.
Belpassi
,
I.
Infante
,
F.
Tarantelli
, and
L.
Visscher
, “
The chemical bond between Au(I) and the noble gases. Comparative study of NgAuF and NgAu+ (Ng = Ar, Kr, Xe) by density functional and coupled cluster methods
,”
J. Am. Chem. Soc.
130
,
1048
1060
(
2008
).
79.
S.
Kümmel
and
L.
Kronik
, “
Orbital-dependent density functionals: Theory and applications
,”
Rev. Mod. Phys.
80
,
3
(
2008
).

Supplementary Material

You do not currently have access to this content.