A precise understanding of mechanisms governing the dynamics of electrons in atoms and molecules subjected to intense laser fields has a key importance for the description of attosecond processes such as the high-harmonic generation and ionization. From the theoretical point of view, this is still a challenging task, as new approaches to solve the time-dependent Schrödinger equation with both good accuracy and efficiency are still emerging. Until recently, the purely numerical methods of real-time propagation of the wavefunction using finite grids have been frequently and successfully used to capture the electron dynamics in small one- or two-electron systems. However, as the main focus of attoscience shifts toward many-electron systems, such techniques are no longer effective and need to be replaced by more approximate but computationally efficient ones. In this paper, we explore the increasingly popular method of expanding the wavefunction of the examined system into a linear combination of atomic orbitals and present a novel systematic scheme for constructing an optimal Gaussian basis set suitable for the description of excited and continuum atomic or molecular states. We analyze the performance of the proposed basis sets by carrying out a series of time-dependent configuration interaction calculations for the hydrogen atom in fields of intensity varying from 5 × 1013 W/cm2 to 5 × 1014 W/cm2. We also compare the results with the data obtained using Gaussian basis sets proposed previously by other authors.

1.
P.
Agostini
and
L. F.
DiMauro
, “
The physics of attosecond light pulses
,”
Rep. Prog. Phys.
67
,
813
855
(
2004
).
2.
P. B.
Corkum
and
F.
Krausz
, “
Attosecond science
,”
Nat. Phys.
3
,
381
387
(
2007
).
3.
F.
Krausz
and
M.
Ivanov
, “
Attosecond physics
,”
Rev. Mod. Phys.
81
,
163
234
(
2009
).
4.
A.
McPherson
,
G.
Gibson
,
H.
Jara
,
U.
Johann
,
T. S.
Luk
,
I. A.
McIntyre
,
K.
Boyer
, and
C. K.
Rhodes
, “
Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases
,”
J. Opt. Soc. Am. B
4
,
595
601
(
1987
).
5.
M.
Ferray
,
A.
L’Huillier
,
X. F.
Li
,
L. A.
Lompre
,
G.
Mainfray
, and
C.
Manus
, “
Multiple-harmonic conversion of 1064 nm radiation in rare gases
,”
J. Phys. B: At., Mol. Opt. Phys.
21
,
L31
(
1988
).
6.
J. L.
Krause
,
K. J.
Schafer
, and
K. C.
Kulander
, “
High-order harmonic generation from atoms and ions in the high intensity regime
,”
Phys. Rev. Lett.
68
,
3535
3538
(
1992
).
7.
P. B.
Corkum
, “
Plasma perspective on strong field multiphoton ionization
,”
Phys. Rev. Lett.
71
,
1994
1997
(
1993
).
8.
K. C.
Kulander
,
K. J.
Schafer
, and
J. L.
Krause
, “
Dynamics of short-pulse excitation, ionization and harmonic conversion
,” in
Super-Intense Laser—Atom Physics
, NATO Advanced Studies Institute Series B: Physics Vol. 316, edited by
B.
Piraux
,
A.
L’Huillier
, and
K.
Rzażewski
(
Plenum
,
New York
,
1993
), pp.
95
110
.
9.
M.
Lewenstein
,
P.
Balcou
,
M. Y.
Ivanov
,
A.
L’Huillier
, and
P. B.
Corkum
, “
Theory of high-harmonic generation by low-frequency laser fields
,”
Phys. Rev. A
49
,
2117
2132
(
1994
).
10.
E.
Constant
,
D.
Garzella
,
P.
Breger
,
E.
Mével
,
C.
Dorrer
,
C.
Le Blanc
,
F.
Salin
, and
P.
Agostini
, “
Optimizing high harmonic generation in absorbing gases: Model and experiment
,”
Phys. Rev. Lett.
82
,
1668
1671
(
1999
).
11.
E. A.
Gibson
,
A.
Paul
,
N.
Wagner
,
R.
Tobey
,
S.
Backus
,
I. P.
Christov
,
M. M.
Murnane
, and
H. C.
Kapteyn
, “
High-order harmonic generation up to 250 eV from highly ionized argon
,”
Phys. Rev. Lett.
92
,
033001
(
2004
).
12.
L. A.
Lompre
,
G.
Mainfray
,
C.
Manus
,
S.
Repoux
, and
J.
Thebault
, “
Multiphoton ionization of rare gases at very high laser intensity (1015 W/cm2) by a 30-psec laser pulse at 1.06 μm
,”
Phys. Rev. Lett.
36
,
949
952
(
1976
).
13.
P.
Lambropoulos
, “
Mechanisms for multiple ionization of atoms by strong pulsed lasers
,”
Phys. Rev. Lett.
55
,
2141
2144
(
1985
).
14.
R. R.
Freeman
,
P. H.
Bucksbaum
,
H.
Milchberg
,
S.
Darack
,
D.
Schumacher
, and
M. E.
Geusic
, “
Above-threshold ionization with subpicosecond laser pulses
,”
Phys. Rev. Lett.
59
,
1092
1095
(
1987
).
15.
F.
Yergeau
,
S. L.
Chin
, and
P.
Lavigne
, “
Multiple ionisation of rare-gas atoms by an intense CO2 laser (1014 W cm−2)
,”
J. Phys. B: At. Mol. Phys.
20
,
723
739
(
1987
).
16.
S.
Augst
,
D.
Strickland
,
D. D.
Meyerhofer
,
S. L.
Chin
, and
J. H.
Eberly
, “
Tunneling ionization of noble gases in a high-intensity laser field
,”
Phys. Rev. Lett.
63
,
2212
2215
(
1989
).
17.
P. B.
Corkum
,
N. H.
Burnett
, and
F.
Brunel
, “
Above-threshold ionization in the long-wavelength limit
,”
Phys. Rev. Lett.
62
,
1259
1262
(
1989
).
18.
E.
Mevel
,
P.
Breger
,
R.
Trainham
,
G.
Petite
,
P.
Agostini
,
A.
Migus
,
J.-P.
Chambaret
, and
A.
Antonetti
, “
Atoms in strong optical fields: Evolution from multiphoton to tunnel ionization
,”
Phys. Rev. Lett.
70
,
406
409
(
1993
).
19.
U.
Mohideen
,
M. H.
Sher
,
H. W. K.
Tom
,
G. D.
Aumiller
,
O. R.
Wood
,
R. R.
Freeman
,
J.
Boker
, and
P. H.
Bucksbaum
, “
High intensity above-threshold ionization of He
,”
Phys. Rev. Lett.
71
,
509
512
(
1993
).
20.
K. J.
Schafer
,
B.
Yang
,
L. F.
DiMauro
, and
K. C.
Kulander
, “
Above threshold ionization beyond the high harmonic cutoff
,”
Phys. Rev. Lett.
70
,
1599
1602
(
1993
).
21.
B.
Walker
,
B.
Sheehy
,
L. F.
DiMauro
,
P.
Agostini
,
K. J.
Schafer
, and
K. C.
Kulander
, “
Precision measurement of strong field double ionization of helium
,”
Phys. Rev. Lett.
73
,
1227
1230
(
1994
).
22.
J. B.
Watson
,
A.
Sanpera
,
D. G.
Lappas
,
P. L.
Knight
, and
K.
Burnett
, “
Nonsequential double ionization of helium
,”
Phys. Rev. Lett.
78
,
1884
1887
(
1997
).
23.
R.
Moshammer
,
B.
Feuerstein
,
W.
Schmitt
,
A.
Dorn
,
C. D.
Schröter
,
J.
Ullrich
,
H.
Rottke
,
C.
Trump
,
M.
Wittmann
,
G.
Korn
,
K.
Hoffmann
, and
W.
Sandner
,
Phys. Rev. Lett.
84
,
447
(
2000
).
24.
J.
Muth-Böhm
,
A.
Becker
, and
F. H. M.
Faisal
, “
Suppressed molecular ionization for a class of diatomics in intense femtosecond laser fields
,”
Phys. Rev. Lett.
85
,
2280
2283
(
2000
).
25.
T.
Weber
,
H.
Giessen
,
M.
Weckenbrock
,
G.
Urbasch
,
A.
Staudte
,
L.
Spielberger
,
O.
Jagutzki
,
V.
Mergel
,
M.
Vollmer
,
R.
Dörner
 et al., “
Correlated electron emission in multiphoton double ionization
,”
Nature
405
,
658
661
(
2000
).
26.
R.
Taïeb
,
V.
Véniard
, and
A.
Maquet
, “
Photoelectron spectra from multiple ionization of atoms in ultra-intense laser pulses
,”
Phys. Rev. Lett.
87
,
053002
(
2001
).
27.
E.
Gubbini
,
U.
Eichmann
,
M.
Kalashnikov
, and
W.
Sandner
, “
Core relaxation in atomic ultrastrong laser field ionization
,”
Phys. Rev. Lett.
94
,
053602
(
2005
).
28.
P.
Koval
,
F.
Wilken
,
D.
Bauer
, and
C. H.
Keitel
, “
Nonsequential double recombination in intense laser fields
,”
Phys. Rev. Lett.
98
,
043904
(
2007
).
29.
M.
Busuladžić
,
A.
Gazibegović-Busuladžić
,
D. B.
Milošević
, and
W.
Becker
, “
Angle-resolved high-order above-threshold ionization of a molecule: Sensitive tool for molecular characterization
,”
Phys. Rev. Lett.
100
,
203003
(
2008
).
30.
P.
Eckle
,
A. N.
Pfeiffer
,
C.
Cirelli
,
A.
Staudte
,
R.
Dorner
,
H. G.
Muller
,
M.
Buttiker
, and
U.
Keller
, “
Attosecond ionization and tunneling delay time measurements in helium
,”
Science
322
,
1525
1529
(
2008
).
31.
A.
L’Huillier
,
K. J.
Schafer
, and
K. C.
Kulander
, “
Higher-order harmonic generation in xenon at 1064 nm: The role of phase matching
,”
Phys. Rev. Lett.
66
,
2200
2203
(
1991
).
32.
Z.
Chang
,
A.
Rundquist
,
H.
Wang
,
M. M.
Murnane
, and
H. C.
Kapteyn
, “
Generation of coherent soft X rays at 2.7 nm using high harmonics
,”
Phys. Rev. Lett.
79
,
2967
2970
(
1997
).
33.
C.
Spielmann
,
N. H.
Burnett
,
S.
Sartania
,
R.
Koppitsch
,
M.
Schnürer
,
C.
Kan
,
M.
Lenzner
,
P.
Wobrauschek
, and
F.
Krausz
, “
Generation of coherent X-rays in the water window using 5-femtosecond laser pulses
,”
Science
278
,
661
664
(
1997
).
34.
E. A.
Gibson
,
A.
Paul
,
N.
Wagner
,
R.
Tobey
,
D.
Gaudiosi
,
S.
Backus
,
I. P.
Christov
,
A.
Aquila
,
E. M.
Gullikson
,
D. T.
Attwood
,
M. M.
Murnane
, and
H. C.
Kapteyn
, “
Coherent soft X-ray generation in the water window with quasi-phase matching
,”
Science
302
,
95
98
(
2003
).
35.
J.
Seres
,
E.
Seres
,
A. J.
Verhoef
,
G.
Tempea
,
C.
Streli
,
P.
Wobrauschek
,
V.
Yakovlev
,
A.
Scrinzi
,
C.
Spielmann
,
F.
Krausz
 et al., “
Source of coherent kiloelectronvolt X-rays
,”
Nature
433
,
596
(
2005
).
36.
T.
Popmintchev
,
M.-C.
Chen
,
D.
Popmintchev
,
P.
Arpin
,
S.
Brown
,
S.
Alisauskas
,
G.
Andriukaitis
,
T.
Balciunas
,
O. D.
Mucke
,
A.
Pugzlys
et al., “
Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers
,”
Science
336
,
1287
1291
(
2012
).
37.
T.
Brabec
and
F.
Krausz
, “
Intense few-cycle laser fields: Frontiers of nonlinear optics
,”
Rev. Mod. Phys.
72
,
545
591
(
2000
).
38.
P.
Salieres
,
T.
Ditmire
,
K. S.
Budil
,
M. D.
Perry
, and
A.
L’Huillier
, “
Spatial profiles of high-order harmonics generated by a femtosecond Cr:LiSAF laser
,”
J. Phys. B: At., Mol. Opt. Phys.
27
,
L217
(
1994
).
39.
M.
Bellini
,
C.
Lyngå
,
A.
Tozzi
,
M. B.
Gaarde
,
T. W.
Hänsch
,
A.
L’Huillier
, and
C.-G.
Wahlström
, “
Temporal coherence of ultrashort high-order harmonic pulses
,”
Phys. Rev. Lett.
81
,
297
300
(
1998
).
40.
M.
Chini
,
K.
Zhao
, and
Z.
Chang
, “
The generation, characterization and applications of broadband isolated attosecond pulses
,”
Nat. Photonics
8
,
178
186
(
2014
).
41.
F. H. M.
Faisal
,
Theory of Multiphoton Processes
(
Plenum Press
,
1987
).
42.
K.
Amini
,
J.
Biegert
,
F.
Calegari
,
A.
Chacón
,
M. F.
Ciappina
,
A.
Dauphin
,
D. K.
Efimov
,
C. F. D. M.
Faria
,
K.
Giergiel
,
P.
Gniewek
et al., “
Symphony on strong field approximation
,”
Rep. Prog. Phys.
82
,
116001
(
2019
).
43.
A.
Scrinzi
, “
Time-dependent Schrödinger equation
,” in
Attosecond and XUV Physics: Ultrafast Dynamics and Spectroscopy
, edited by
T.
Schultz
and
M.
Vrakking
(
Wiley-VCH
,
Weinheim
,
2014
), pp.
257
292
.
44.
M. A.
Lysaght
,
H. W.
van der Hart
, and
P. G.
Burke
, “
Time-dependent R-matrix theory for ultrafast atomic processes
,”
Phys. Rev. A
79
,
053411
(
2009
).
45.
U.
Peskin
and
N.
Moiseyev
, “
The solution of the time-dependent Schrödinger equation by the (t, t′) method: Theory, computational algorithm and applications
,”
J. Chem. Phys.
99
,
4590
4596
(
1993
).
46.
N.
Moiseyev
and
F.
Weinhold
, “
High harmonic generation spectra of neutral helium by the complex-scaled (t, t′) method: Role of dynamical electron correlation
,”
Phys. Rev. Lett.
78
,
2100
2103
(
1997
).
47.
N.
Moiseyev
and
M.
Lein
, “
Non-Hermitian quantum mechanics for high-order harmonic generation spectra
,”
J. Phys. Chem. A
107
,
7181
7188
(
2003
).
48.
I.
Gilary
,
P. R.
Kaprálová-Žd’ánská
, and
N.
Moiseyev
, “
Ab initio calculation of harmonic generation spectra of helium using a time-dependent non-Hermitian formalism
,”
Phys. Rev. A
74
,
052505
(
2006
).
49.
K. C.
Kulander
,
K. J.
Schafer
, and
J. L.
Krause
, “
Dynamic stabilization of hydrogen in an intense, high-frequency, pulsed laser field
,”
Phys. Rev. Lett.
66
,
2601
2604
(
1991
).
50.
J. L.
Krause
,
K. J.
Schafer
, and
K. C.
Kulander
, “
Calculation of photoemission from atoms subject to intense laser fields
,”
Phys. Rev. A
45
,
4998
5010
(
1992
).
51.
D.
Bauer
, “
Two-dimensional, two-electron model atom in a laser pulse: Exact treatment, single-active-electron analysis, time-dependent density-functional theory, classical calculations, and nonsequential ionization
,”
Phys. Rev. A
56
,
3028
(
1997
).
52.
J.
Bauer
,
L.
Plucinski
,
B.
Piraux
,
R.
Potvliege
,
M.
Gajda
, and
J.
Krzywinski
, “
Ionization of hydrogen atoms by intense vacuum ultraviolet radiation
,”
J. Phys. B: At., Mol. Opt. Phys.
34
,
2245
2254
(
2001
).
53.
M.
Lein
,
N.
Hay
,
R.
Velotta
,
J. P.
Marangos
, and
P. L.
Knight
, “
Interference effects in high-order harmonic generation with molecules
,”
Phys. Rev. A
66
,
023805
(
2002
).
54.
L.-Y.
Peng
and
A. F.
Starace
, “
Application of Coulomb wave function discrete variable representation to atomic systems in strong laser fields
,”
J. Chem. Phys.
125
,
154311
(
2006
).
55.
C.
Ruiz
,
L.
Plaja
,
R.
Taïeb
,
V.
Véniard
, and
A.
Maquet
, “
Quantum and semiclassical simulations in intense laser-H2+ interactions
,”
Phys. Rev. A
73
,
063411
(
2006
).
56.
E. A.
Volkova
,
V. V.
Gridchin
,
A. M.
Popov
, and
O. V.
Tikhonova
, “
Tunneling ionization of a hydrogen atom in short and ultrashort laser pulses
,”
J. Exp. Theor. Phys.
102
,
40
52
(
2006
).
57.
J. S.
Prauzner-Bechcicki
,
K.
Sacha
,
B.
Eckhardt
, and
J.
Zakrzewski
, “
Time-resolved quantum dynamics of double ionization in strong laser fields
,”
Phys. Rev. Lett.
98
,
203002
(
2007
).
58.
E. A.
Volkova
,
A. M.
Popov
,
M. A.
Tikhonov
, and
O. V.
Tikhonova
, “
Atom under an intense laser pulse: Stabilization effect and strong-field approximation
,”
J. Exp. Theor. Phys.
105
,
526
534
(
2007
).
59.
A. D.
Bandrauk
,
S.
Chelkowski
,
D. J.
Diestler
,
J.
Manz
, and
K.-J.
Yuan
, “
Quantum simulation of high-order harmonic spectra of the hydrogen atom
,”
Phys. Rev. A
79
,
023403
(
2009
).
60.
A. M.
Popov
,
M. A.
Tikhonov
,
O. V.
Tikhonova
, and
E. A.
Volkova
, “
Comparative analysis of the strong-field ionization of a quantum system with the Coulomb and short-range potentials
,”
Laser Phys.
19
,
191
201
(
2009
).
61.
A. N.
Grum-Grzhimailo
,
B.
Abeln
,
K.
Bartschat
,
D.
Weflen
, and
T.
Urness
, “
Ionization of atomic hydrogen in strong infrared laser fields
,”
Phys. Rev. A
81
,
043408
(
2010
).
62.
S.
Patchkovskii
and
H. G.
Muller
, “
Simple, accurate, and efficient implementation of 1-electron atomic time-dependent Schrödinger equation in spherical coordinates
,”
Comput. Phys. Commun.
199
,
153
169
(
2016
).
63.
A. D.
Müller
,
E.
Kutscher
,
A. N.
Artemyev
,
L. S.
Cederbaum
, and
P. V.
Demekhin
, “
Dynamic interference in the resonance-enhanced multiphoton ionization of hydrogen atoms by short and intense laser pulses
,”
Chem. Phys.
509
,
145
150
(
2018
).
64.
E. S.
Smyth
,
J. S.
Parker
, and
K. T.
Taylor
, “
Numerical integration of the time-dependent Schrödinger equation for laser-driven helium
,”
Comput. Phys. Commun.
114
,
1
14
(
1998
).
65.
J. S.
Parker
,
E. S.
Smyth
, and
K. T.
Taylor
, “
Intense-field multiphoton ionization of helium
,”
J. Phys. B: At., Mol. Opt. Phys.
31
,
L571
(
1998
).
66.
J. S.
Parker
,
L. R.
Moore
,
D.
Dundas
, and
K. T.
Taylor
, “
Double ionization of helium at 390 nm
,”
J. Phys. B: At., Mol. Opt. Phys.
33
,
L691
(
2000
).
67.
J. S.
Parker
,
L. R.
Moore
,
K. J.
Meharg
,
D.
Dundas
, and
K. T.
Taylor
, “
Double-electron above threshold ionization of helium
,”
J. Phys. B: At., Mol. Opt. Phys.
34
,
L69
(
2001
).
68.
J. S.
Parker
,
B. J. S.
Doherty
,
K. J.
Meharg
, and
K. T.
Taylor
, “
Time delay between singly and doubly ionizing wavepackets in laser-driven helium
,”
J. Phys. B: At., Mol. Opt. Phys.
36
,
L393
(
2003
).
69.
J. S.
Parker
,
B. J. S.
Doherty
,
K. T.
Taylor
,
K. D.
Schultz
,
C. I.
Blaga
, and
L. F.
DiMauro
, “
High-energy cutoff in the spectrum of strong-field nonsequential double ionization
,”
Phys. Rev. Lett.
96
,
133001
(
2006
).
70.
J. S.
Parker
,
K. J.
Meharg
,
G. A.
Mckenna
, and
K. T.
Taylor
, “
Single-ionization of helium at Ti:Sapphire wavelengths: Rates and scaling laws
,”
J. Phys. B: At., Mol. Opt. Phys.
40
,
1729
1743
(
2007
).
71.
F.
Robicheaux
, “
Time propagation of extreme two-electron wavefunctions
,”
J. Phys. B: At., Mol. Opt. Phys.
45
,
135007
(
2012
).
72.
K. C.
Kulander
,
K. J.
Schafer
, and
J. L.
Krause
, “
Single-active electron calculation of multiphoton process in krypton
,”
Int. J. Quantum Chem.
40
,
415
429
(
1991
).
73.
K. C.
Kulander
,
K. J.
Schafer
, and
J. L.
Krause
, “
Time-dependent studies of multiphoton processes
,” in
Atoms in Intense Laser Fields
, edited by
M.
Gavrila
(
Academic Press
,
Boston
,
1992
), pp.
247
300
.
74.
N. H.
Shon
,
A.
Suda
, and
K.
Midorikawa
, “
Generation and propagation of high-order harmonics in high-pressure gases
,”
Phys. Rev. A
62
,
023801
(
2000
).
75.
E. J.
Takahashi
,
T.
Kanai
,
K. L.
Ishikawa
,
Y.
Nabekawa
, and
K.
Midorikawa
, “
Dramatic enhancement of high-order harmonic generation
,”
Phys. Rev. Lett.
99
,
053904
(
2007
).
76.
M.
Awasthi
,
S.
Petretti
,
Y. V.
Vanne
,
A.
Saenz
,
A.
Castro
, and
P.
Decleva
, “
Single-active-electron approximation for molecules in strong laser fields: Test application to H2
,”
J. Phys.: Conf. Ser.
194
,
022064
(
2009
).
77.
I. A.
Ivanov
and
A. S.
Kheifets
, “
Calculation of HHG spectra in complex atoms
,”
J. Phys. B: At., Mol. Opt. Phys.
42
,
145601
(
2009
).
78.
I. A.
Ivanov
and
A. S.
Kheifets
, “
Harmonic generation for atoms in fields of varying ellipticity: Single-active-electron model with Hartree-Fock potential
,”
Phys. Rev. A
79
,
053827
(
2009
).
79.
M.
Abu-samha
and
L. B.
Madsen
, “
Single-active-electron potentials for molecules in intense laser fields
,”
Phys. Rev. A
81
,
033416
(
2010
).
80.
S.
Petretti
,
Y. V.
Vanne
,
A.
Saenz
,
A.
Castro
, and
P.
Decleva
, “
Alignment-dependent ionization of N2, O2, and CO2 in intense laser fields
,”
Phys. Rev. Lett.
104
,
223001
(
2010
).
81.
X.-M.
Tong
,
G.
Wachter
,
S. A.
Sato
,
C.
Lemell
,
K.
Yabana
, and
J.
Burgdörfer
, “
Application of norm-conserving pseudopotentials to intense laser-matter interactions
,”
Phys. Rev. A
92
,
043422
(
2015
).
82.
C.-T.
Le
,
V.-H.
Hoang
,
L.-P.
Tran
, and
V.-H.
Le
, “
Effect of the dynamic core-electron polarization of co molecules on high-order harmonic generation
,”
Phys. Rev. A
97
,
043405
(
2018
).
83.
M.
Mandrysz
,
M.
Kübel
,
J.
Zakrzewski
, and
J. S.
Prauzner-Bechcicki
, “
Rescattering effects in streaking experiments of strong-field ionization
,”
Phys. Rev. A
100
,
063410
(
2019
).
84.
J.
Javanainen
,
J. H.
Eberly
, and
Q.
Su
, “
Numerical simulations of multiphoton ionization and above-threshold electron spectra
,”
Phys. Rev. A
38
,
3430
3446
(
1988
).
85.
J. H.
Eberly
,
Q.
Su
, and
J.
Javanainen
, “
Nonlinear light scattering accompanying multiphoton ionization
,”
Phys. Rev. Lett.
62
,
881
884
(
1989
).
86.
J. H.
Eberly
,
Q.
Su
, and
J.
Javanainen
, “
High-order harmonic production in multiphoton ionization
,”
J. Opt. Soc. Am. B
6
,
1289
1298
(
1989
).
87.
Q.
Su
and
J. H.
Eberly
, “
Stabilization of a model atom in superintense field ionization
,”
J. Opt. Soc. Am. B
7
,
564
568
(
1990
).
88.
Q.
Su
and
J. H.
Eberly
, “
Model atom for multiphoton physics
,”
Phys. Rev. A
44
,
5997
6008
(
1991
).
89.
R.
Grobe
and
J. H.
Eberly
, “
Photoelectron spectra for a two-electron system in a strong laser field
,”
Phys. Rev. Lett.
68
,
2905
2908
(
1992
).
90.
R.
Grobe
and
J. H.
Eberly
, “
One-dimensional model of a negative ion and its interaction with laser fields
,”
Phys. Rev. A
48
,
4664
4681
(
1993
).
91.
M.
Lein
,
E. K. U.
Gross
, and
V.
Engel
, “
Intense-field double ionization of helium: Identifying the mechanism
,”
Phys. Rev. Lett.
85
,
4707
4710
(
2000
).
92.
C.
Ruiz
,
L.
Plaja
,
L.
Roso
, and
A.
Becker
, “
Ab initio calculation of the double ionization of helium in a few-cycle laser pulse beyond the one-dimensional approximation
,”
Phys. Rev. Lett.
96
,
053001
(
2006
).
93.
A.
Staudte
,
C.
Ruiz
,
M.
Schöffler
,
S.
Schössler
,
D.
Zeidler
,
T.
Weber
,
M.
Meckel
,
D. M.
Villeneuve
,
P. B.
Corkum
,
A.
Becker
, and
R.
Dörner
, “
Binary and recoil collisions in strong field double ionization of helium
,”
Phys. Rev. Lett.
99
,
263002
(
2007
).
94.
J. S.
Prauzner-Bechcicki
,
K.
Sacha
,
B.
Eckhardt
, and
J.
Zakrzewski
, “
Quantum model for double ionization of atoms in strong laser fields
,”
Phys. Rev. A
78
,
013419
(
2008
).
95.
D. K.
Efimov
,
A.
Maksymov
,
J. S.
Prauzner-Bechcicki
,
J. H.
Thiede
,
B.
Eckhardt
,
A.
Chacón
,
M.
Lewenstein
, and
J.
Zakrzewski
, “
Restricted-space ab initio models for double ionization by strong laser pulses
,”
Phys. Rev. A
98
,
013405
(
2018
).
96.
D. K.
Efimov
,
J. S.
Prauzner-Bechcicki
,
J. H.
Thiede
,
B.
Eckhardt
, and
J.
Zakrzewski
, “
Double ionization of a three-electron atom: Spin correlation effects
,”
Phys. Rev. A
100
,
063408
(
2019
).
97.
D. K.
Efimov
,
J. S.
Prauzner-Bechcicki
, and
J.
Zakrzewski
, “
Strong-field ionization of atoms with p3 valence shell: Two versus three active electrons
,”
Phys. Rev. A
101
,
063402
(
2020
).
98.
A.
Gordon
,
F. X.
Kärtner
,
N.
Rohringer
, and
R.
Santra
, “
Role of many-electron dynamics in high harmonic generation
,”
Phys. Rev. Lett.
96
,
223902
(
2006
).
99.
M.
Kitzler
,
J.
Zanghellini
,
C.
Jungreuthmayer
,
M.
Smits
,
A.
Scrinzi
, and
T.
Brabec
, “
Ionization dynamics of extended multielectron systems
,”
Phys. Rev. A
70
,
041401(R)
(
2004
).
100.
J.
Caillat
,
J.
Zanghellini
,
M.
Kitzler
,
O.
Koch
,
W.
Kreuzer
, and
A.
Scrinzi
, “
Correlated multielectron systems in strong laser fields: A multiconfiguration time-dependent Hartree–Fock approach
,”
Phys. Rev. A
71
,
012712
(
2005
).
101.
X.
Li
,
S. M.
Smith
,
A. N.
Markevitch
,
D. A.
Romanov
,
R. J.
Levis
, and
H. B.
Schlegel
, “
A time-dependent Hartree–Fock approach for studying the electronic optical response of molecules in intense fields
,”
Phys. Chem. Chem. Phys.
7
,
233
239
(
2005
).
102.
L. A. A.
Nikolopoulos
,
T. K.
Kjeldsen
, and
L. B.
Madsen
, “
Three-dimensional time-dependent Hartree–Fock approach for arbitrarily oriented molecular hydrogen in strong electromagnetic fields
,”
Phys. Rev. A
76
,
033402
(
2007
).
103.
M.
Nest
,
T.
Klamroth
, and
P.
Saalfrank
, “
Ab initio electron dynamics with the multi-configuration time-dependent Hartree–Fock method
,”
Z. Phys. Chem.
224
,
569
581
(
2010
).
104.
F.
Ding
,
W.
Liang
,
C. T.
Chapman
,
C. M.
Isborn
, and
X.
Li
, “
On the gauge invariance of nonperturbative electronic dynamics using the time-dependent Hartree–Fock and time-dependent Kohn–Sham
,”
J. Chem. Phys.
135
,
164101
(
2011
).
105.
P.
Krause
,
T.
Klamroth
, and
P.
Saalfrank
, “
Time-dependent configuration-interaction calculations of laser-pulse-driven many-electron dynamics: Controlled dipole switching in lithium cyanide
,”
J. Chem. Phys.
123
,
074105
(
2005
).
106.
P.
Krause
,
T.
Klamroth
, and
P.
Saalfrank
, “
Molecular response properties from explicitly time-dependent configuration interaction methods
,”
J. Chem. Phys.
127
,
034107
(
2007
).
107.
L.
Greenman
,
P. J.
Ho
,
S.
Pabst
,
E.
Kamarchik
,
D. A.
Mazziotti
, and
R.
Santra
, “
Implementation of the time-dependent configuration-interaction singles method for atomic strong-field processes
,”
Phys. Rev. A
82
,
023406
(
2010
).
108.
J. A.
Sonk
,
M.
Caricato
, and
H. B.
Schlegel
, “
TD-CI simulation of the electronic optical response of molecules in intense fields: Comparison of RPA, CIS, CIS(D), and EOM-CCSD
,”
J. Phys. Chem. A
115
,
4678
4690
(
2011
).
109.
D.
Hochstuhl
and
M.
Bonitz
, “
Time-dependent restricted-active-space configuration-interaction method for the photoionization of many-electron atoms
,”
Phys. Rev. A
86
,
053424
(
2012
).
110.
S.
Bauch
,
L. K.
Sørensen
, and
L. B.
Madsen
, “
Time-dependent generalized-active-space configuration-interaction approach to photoionization dynamics of atoms and molecules
,”
Phys. Rev. A
90
,
062508
(
2014
).
111.
P. J.
Lestrange
,
M. R.
Hoffmann
, and
X.
Li
, “
Time-dependent configuration interaction using the graphical unitary group approach: Nonlinear electric properties
,”
Adv. Quantum Chem.
76
,
295
313
(
2018
).
112.
X.-M.
Tong
and
S.-I.
Chu
, “
Time-dependent density-functional theory for strong-field multiphoton processes: Application to the study of the role of dynamical electron correlation in multiple high-order harmonic generation
,”
Phys. Rev. A
57
,
452
461
(
1998
).
113.
A.
Castro
,
M. A. L.
Marques
, and
A.
Rubio
, “
Propagators for the time-dependent Kohn–Sham equations
,”
J. Chem. Phys.
121
,
3425
3433
(
2004
).
114.
K.
Lopata
and
N.
Govind
, “
Modeling fast electron dynamics with real-time time-dependent density functional theory: Application to small molecules and chromophores
,”
J. Chem. Theory Comput.
7
,
1344
1355
(
2011
).
115.
J. J.
Goings
,
P. J.
Lestrange
, and
X.
Li
, “
Real-time time-dependent electronic structure theory
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1341
(
2017
).
116.
M.
Ruberti
,
V.
Averbukh
, and
P.
Decleva
, “
B-spline algebraic diagrammatic construction: Application to photoionization cross-sections and high-order harmonic generation
,”
J. Chem. Phys.
141
,
164126
(
2014
).
117.
M.
Ruberti
,
P.
Decleva
, and
V.
Averbukh
, “
Full ab initio many-electron simulation of attosecond molecular pump–probe spectroscopy
,”
J. Chem. Theory Comput.
14
,
4991
5000
(
2018
).
118.
C.
Huber
and
T.
Klamroth
, “
Explicitly time-dependent coupled cluster singles doubles calculations of laser-driven many-electron dynamics
,”
J. Chem. Phys.
134
,
054113
(
2011
).
119.
S.
Kvaal
, “
Ab initio quantum dynamics using coupled-cluster
,”
J. Chem. Phys.
136
,
194109
(
2012
).
120.
T.
Sato
,
H.
Pathak
,
Y.
Orimo
, and
K. L.
Ishikawa
, “
Time-dependent optimized coupled-cluster method for multielectron dynamics
,”
J. Chem. Phys.
148
,
051101
(
2018
).
121.
F.
Jensen
, “
Atomic orbital basis sets
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
3
,
273
295
(
2012
).
122.
K.
Kaufmann
,
W.
Baumeister
, and
M.
Jungen
, “
Universal Gaussian basis sets for an optimum representation of Rydberg and continuum wavefunctions
,”
J. Phys. B: At., Mol. Opt. Phys.
22
,
2223
2240
(
1989
).
123.
B. M.
Nestmann
and
S. D.
Peyerimhoff
, “
Optimized Gaussian basis sets for representation of continuum wavefunctions
,”
J. Phys. B: At., Mol. Opt. Phys.
23
,
L773
(
1990
).
124.
A.
Faure
,
J. D.
Gorfinkiel
,
L. A.
Morgan
, and
J.
Tennyson
, “
GTOBAS: Fitting continuum functions with Gaussian-type orbitals
,”
Comput. Phys. Commun.
144
,
224
241
(
2002
).
125.
P. R.
Kaprálová-Žd’ánská
, “
High-order harmonic generation spectrum from two coupled Floquet resonances—A non-Hermitian formulation
,”
Mol. Phys.
117
,
2138
2156
(
2019
).
126.
B. I.
Schneider
, “
Accurate basis sets for the calculation of bound and continuum wave functions of the Schrödinger equation
,”
Phys. Rev. A
55
,
3417
3421
(
1997
).
127.
H.
Bachau
,
E.
Cormier
,
P.
Decleva
,
J. E.
Hansen
, and
F.
Martín
, “
Applications of B-splines in atomic and molecular physics
,”
Rep. Prog. Phys.
64
,
1815
1943
(
2001
).
128.
F. L.
Yip
,
C. W.
McCurdy
, and
T. N.
Rescigno
, “
Hybrid Gaussian–discrete-variable representation for one- and two-active-electron continuum calculations in molecules
,”
Phys. Rev. A
90
,
063421
(
2014
).
129.
C.
Marante
,
L.
Argenti
, and
F.
Martín
, “
Hybrid Gaussian–B-spline basis for the electronic continuum: Photoionization of atomic hydrogen
,”
Phys. Rev. A
90
,
012506
(
2014
).
130.
J.
González-Vázquez
,
M.
Klinker
,
C.
Marante
,
L.
Argenti
,
I.
Corral
, and
F.
Martín
, “
Describing ionization of small molecules with a Gaussian and B-splines mixed basis (GABS)
,”
J. Phys.: Conf. Ser.
635
,
112110
(
2015
).
131.
M.
Labeye
,
F.
Zapata
,
E.
Coccia
,
V.
Véniard
,
J.
Toulouse
,
J.
Caillat
,
R.
Taïeb
, and
E.
Luppi
, “
Optimal basis set for electron dynamics in strong laser fields: The case of molecular ion H2+
,”
J. Chem. Theory Comput.
14
,
5846
5858
(
2018
).
132.
M.
Fiori
and
J. E.
Miraglia
, “
New approach for approximating the continuum wave function by Gaussian basis set
,”
Comput. Phys. Commun.
183
,
2528
2534
(
2012
).
133.
M. S.
Szczygieł
,
M.
Lesiuk
, and
R.
Moszyński
, “
Theoretical description of the ionization processes with a discrete basis set representation of the electronic continuum
,” arXiv:1909.07833 [physics.chem-ph] (
2019
).
134.
K.
Rowan
,
L.
Schatzki
,
T.
Zaklama
,
Y.
Suzuki
,
K.
Watanabe
, and
K.
Varga
, “
Simulation of a hydrogen atom in a laser field using the time-dependent variational principle
,”
Phys. Rev. E
101
,
023313
(
2020
).
135.
E.
Coccia
,
B.
Mussard
,
M.
Labeye
,
J.
Caillat
,
R.
Taïeb
,
J.
Toulouse
, and
E.
Luppi
, “
Gaussian continuum basis functions for calculating high-harmonic generation spectra
,”
Int. J. Quantum Chem.
116
,
1120
1131
(
2016
).
136.
E.
Coccia
and
E.
Luppi
, “
Optimal-continuum and multicentered Gaussian basis sets for high-harmonic generation spectroscopy
,”
Theor. Chem. Acc.
135
,
43
(
2016
).
137.
E.
Coccia
,
R.
Assaraf
,
E.
Luppi
, and
J.
Toulouse
, “
Ab initio lifetime correction to scattering states for time-dependent electronic-structure calculations with incomplete basis sets
,”
J. Chem. Phys.
147
,
014106
(
2017
).
138.
E.
Coccia
and
E.
Luppi
, “
Detecting the minimum in argon high-harmonic generation spectrum using Gaussian basis sets
,”
Theor. Chem. Acc.
138
,
96
(
2019
).
139.
E.
Coccia
, “
How electronic dephasing affects the high-harmonic generation in atoms
,”
Mol. Phys.
118
,
e1769871
(
2020
).
140.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
141.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
(
Martino Publishing
,
2014
).
142.
I.
Cherkes
,
S.
Klaiman
, and
N.
Moiseyev
, “
Spanning the Hilbert space with an even tempered Gaussian basis set
,”
Int. J. Quantum Chem.
109
,
2996
3002
(
2009
).
143.
Y.-C.
Han
and
L. B.
Madsen
, “
Comparison between length and velocity gauges in quantum simulations of high-order harmonic generation
,”
Phys. Rev. A
81
,
063430
(
2010
).
144.
J.
Crank
and
P.
Nicolson
, “
A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type
,”
Math. Proc. Cambridge Philos. Soc.
43
,
50
67
(
1947
).
145.
D.
Bauer
and
P.
Koval
, “
QPROP: A Schrödinger-solver for intense laser–atom interaction
,”
Comput. Phys. Commun.
174
,
396
421
(
2006
).
146.
V.
Tulsky
and
D.
Bauer
, “
QPROP with faster calculation of photoelectron spectra
,”
Comput. Phys. Commun.
251
,
107098
(
2020
).
147.
R.
Kosloff
and
D.
Kosloff
, “
Absorbing boundaries for wave propagation problems
,”
J. Comput. Phys.
63
,
363
376
(
1986
).
148.
U. V.
Riss
and
H. D.
Meyer
, “
Investigation on the reflection and transmission properties of complex absorbing potentials
,”
J. Chem. Phys.
105
,
1409
1419
(
1996
).
149.
D. E.
Manolopoulos
, “
Derivation and reflection properties of a transmission-free absorbing potential
,”
J. Chem. Phys.
117
,
9552
9559
(
2002
).
150.
T.
Gonzalez-Lezana
,
E. J.
Rackham
, and
D. E.
Manolopoulos
, “
Quantum reactive scattering with a transmission-free absorbing potential
,”
J. Chem. Phys.
120
,
2247
2254
(
2004
).
151.
T. P.
Grozdanov
and
R.
McCarroll
, “
Multichannel scattering calculations using absorbing potentials and mapped grids
,”
J. Chem. Phys.
126
,
034310
(
2007
).
152.
A.
Ferré
,
A. E.
Boguslavskiy
,
M.
Dagan
,
V.
Blanchet
,
B. D.
Bruner
,
F.
Burgy
,
A.
Camper
,
D.
Descamps
,
B.
Fabre
,
N.
Fedorov
 et al., “
Multi-channel electronic and vibrational dynamics in polyatomic resonant high-order harmonic generation
,”
Nat. Commun.
6
,
5952
(
2015
).
153.
M.
Matthews
,
F.
Morales
,
A.
Patas
,
A.
Lindinger
,
J.
Gateau
,
N.
Berti
,
S.
Hermelin
,
J.
Kasparian
,
M.
Richter
,
T.
Bredtmann
,
O.
Smirnova
,
J.-P.
Wolf
, and
M.
Ivanov
, “
Amplification of intense light fields by nearly free electrons
,”
Nat. Phys.
14
,
695
700
(
2018
).
154.
S.
Pabst
,
A.
Sytcheva
,
O.
Geffert
, and
R.
Santra
, “
Stability of the time-dependent configuration-interaction-singles method in the attosecond and strong-field regimes: A study of basis sets and absorption methods
,”
Phys. Rev. A
94
,
033421
(
2016
).
155.
M.
Ruberti
,
P.
Decleva
, and
V.
Averbukh
, “
Multi-channel dynamics in high harmonic generation of aligned CO2: Ab initio analysis with time-dependent B-spline algebraic diagrammatic construction
,”
Phys. Chem. Chem. Phys.
20
,
8311
8325
(
2018
).
156.
P.
Krause
,
J. A.
Sonk
, and
H. B.
Schlegel
, “
Strong field ionization rates simulated with time-dependent configuration interaction and an absorbing potential
,”
J. Chem. Phys.
140
,
174113
(
2014
).
157.
I. Y.
Kostyukov
and
A. A.
Golovanov
, “
Field ionization in short and extremely intense laser pulses
,”
Phys. Rev. A
98
,
043407
(
2018
).
158.
A.
Sissay
,
P.
Abanador
,
F.
Mauger
,
M.
Gaarde
,
K. J.
Schafer
, and
K.
Lopata
, “
Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory
,”
J. Chem. Phys.
145
,
094105
(
2016
).
159.
W.
Cencek
,
M.
Przybytek
,
J.
Komasa
,
J. B.
Mehl
,
B.
Jeziorski
, and
K.
Szalewicz
, “
Effects of adiabatic, relativistic, and quantum electrodynamics interactions on the pair potential and thermophysical properties of helium
,”
J. Chem. Phys.
136
,
224303
(
2012
).

Supplementary Material

You do not currently have access to this content.