To provide more insight into the excitonic structure and exciton lifetimes of the wild type (WT) CP29 complex of photosystem II, we measured high-resolution (low temperature) absorption, emission, and hole burned spectra for the A2 and B3 mutants, which lack chlorophylls a612 and b614 (Chls), respectively. Experimental and modeling results obtained for the WT CP29 and A2/B3 mutants provide new insight on the mutation-induced changes at the molecular level and shed more light on energy transfer dynamics. Simulations of the A2 and B3 optical spectra, using the second-order non-Markovian theory, and comparison with improved fits of WT CP29 optical spectra provide more insight into their excitonic structure, mutation induced changes, and frequency-dependent distributions of exciton lifetimes (T1). A new Hamiltonian obtained for WT CP29 reveals that deletion of Chls a612 or b614 induces changes in the site energies of all remaining Chls. Hamiltonians obtained for A2 and B3 mutants are discussed in the context of the energy landscape of chlorophylls, excitonic structure, and transfer kinetics. Our data suggest that the lowest exciton states in A2 and B3 mutants are contributed by a611(57%), a610(17%), a615(15%) and a615(58%), a611(20%), a612(15%) Chls, respectively, although other compositions of lowest energy states are also discussed. Finally, we argue that the calculated exciton decay times are consistent with both the hole-burning and recent transient absorption measurements. Wavelength-dependent T1 distributions offer more insight into the interpretation of kinetic traces commonly described by discrete exponentials in global analysis/global fitting of transient absorption experiments.

1.
T.
Kallas
,
In the Molecular Biology of Cyanobacteria
, edited by
D. A.
Bryant
(
Kluwer Academic
,
Dordrecht, The Netherlands
,
1994
), pp.
259
317
.
2.
O.
Nanba
and
K.
Satoh
, “
Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559
,”
Proc. Natl. Acad. Sci. U. S. A.
84
,
109
112
(
1987
).
3.
S.
Jansson
,
E.
Pichersky
,
R.
Bassi
,
B. R.
Green
,
M.
Ikeuchi
,
A.
Melis
,
D. J.
Simpson
,
M.
Spangfort
,
L. A.
Staehelin
, and
J. P.
Thornber
, “
A nomenclature for the genes encoding the chlorophyll a/b-binding proteins of higher plants
,”
Plant Mol. Biol. Rep.
10
,
242
253
(
1992
).
4.
S.
Caffarri
,
R.
Kouřil
,
S.
Kereïche
,
E. J.
Boekema
, and
R.
Croce
, “
Functional architecture of higher plant photosystem II supercomplexes
,”
EMBO J.
28
,
3052
3063
(
2009
).
5.
X.
Su
,
J.
Ma
,
X.
Wei
,
P.
Cao
,
D.
Zhu
,
W.
Chang
,
Z.
Liu
,
X.
Zhang
, and
M.
Li
, “
Structure and assembly mechanism of plant C2S2M2-type PSII-LHCII supercomplex
,”
Science
357
,
815
820
(
2017
).
6.
G.
Zucchelli
,
D.
Brogioli
,
A. P.
Casazza
,
F. M.
Garlaschi
, and
R. C.
Jennings
, “
Chlorophyll ring deformation modulates Qy electronic energy in chlorophyll-protein complexes and generates spectral forms
,”
Biophys. J.
93
,
2240
2254
(
2007
).
7.
T.
Renger
and
F.
Müh
, “
Understanding photosynthetic light-harvesting: A bottom up theoretical approach
,”
Phys. Chem. Chem. Phys.
15
,
3348
3371
(
2013
).
8.
R. C.
Jennings
,
R.
Bassi
,
F. M.
Garlaschi
,
P.
Dainese
, and
G.
Zucchelli
, “
Distribution of the chlorophyll spectral forms in the chlorophyll-protein complexes of photosystem II antenna
,”
Biochemistry
32
,
3203
3210
(
1993
).
9.
G.
Zucchelli
,
P.
Dainese
,
R. C.
Jennings
,
J.
Breton
,
F. M.
Garlaschi
, and
R.
Bassi
, “
Gaussian decomposition of absorption and linear dichroism spectra of outer antenna complexes of photosystem II
,”
Biochemistry
33
,
8982
8990
(
1994
).
10.
C. C.
Gradinaru
,
A. A.
Pascal
,
F.
van Mourik
,
B.
Robert
,
P.
Horton
,
R.
van Grondelle
, and
H.
van Amerongen
, “
Ultrafast evolution of the excited states in the chlorophyll a/b complex CP29 from green plants studied by energy-selective pump-probe spectroscopy
,”
Biochemistry
37
,
1143
1149
(
1998
).
11.
V. I.
Novoderezhkin
,
M. A.
Palacios
,
H.
van Amerongen
, and
R.
van Grondelle
, “
Excitation dynamics in the LHCII complex of higher plants: Modeling based on the 2.72 Å crystal structure
,”
J. Phys. Chem. B
109
,
10493
10504
(
2005
).
12.
R.
Croce
,
M. G.
Müller
,
R.
Bassi
, and
A. R.
Holzwarth
, “
Chlorophyll b to chlorophyll a energy transfer kinetics in the CP29 antenna complex: A comparative femtosecond absorption study between native and reconstituted proteins
,”
Biophys. J.
84
,
2508
2516
(
2003
).
13.
R.
Croce
,
M. G.
Müller
,
S.
Caffarri
,
R.
Bassi
, and
A. R.
Holzwarth
, “
Energy transfer pathways in the minor antenna complex CP29 of photosystem II: A femtosecond study of carotenoid to chlorophyll transfer on mutant and WT complexes
,”
Biophys. J.
84
,
2517
2532
(
2003
).
14.
E. C. M.
Engelmann
,
G.
Zucchelli
,
F. M.
Garlaschi
,
A. P.
Casazza
, and
R. C.
Jennings
, “
The effect of outer antenna complexes on the photochemical trapping rate in barley thylakoid photosystem II
,”
Biochim. Biophys. Acta
1706
,
276
286
(
2005
).
15.
K.
Broess
,
G.
Trinkunas
,
A.
van Hoek
,
R.
Croce
, and
H.
van Amerongen
, “
Determination of the excitation migration time in photosystem II consequences for the membrane organization and charge separation parameters
,”
Biochim. Biophys. Acta, Bioenerg.
1777
,
404
409
(
2008
).
16.
S.
Caffarri
,
K.
Broess
,
R.
Croce
, and
H.
van Amerongen
, “
Excitation energy transfer and trapping in higher plant photosystem II complexes with different antenna sizes
,”
Biophys. J.
100
,
2094
2103
(
2011
).
17.
S.
Caffarri
,
T.
Tibiletti
,
R. C.
Jennings
, and
S.
Santabarbara
, “
A comparison between plant photosystem I and photosystem II architecture and functioning
,”
Curr. Protein Pept. Sci.
15
,
296
331
(
2014
).
18.
X.
Pan
,
M.
Li
,
T.
Wan
,
L.
Wang
,
C.
Jia
,
Z.
Hou
,
X.
Zhao
,
J.
Zhang
, and
W.
Chang
, “
Structural insights into energy regulation of light-harvesting complex CP29 from spinach
,”
Nat. Struct. Mol. Biol.
18
,
309
315
(
2011
).
19.
Z.
Liu
,
H.
Yan
,
K.
Wang
,
T.
Kuang
,
J.
Zhang
,
L.
Gui
,
X.
An
, and
W.
Chang
, “
Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution
,”
Nature
428
,
287
292
(
2004
).
20.
G. F.
Peter
and
J. P.
Thornber
, “
Biochemical composition and organization of higher plant photosystem-II light harvesting pigment-proteins
,”
J. Biol. Chem.
266
,
16745
16754
(
1991
).
21.
E.
Giuffra
,
D.
Cugini
,
R.
Croce
, and
R.
Bassi
, “
Reconstitution and pigment-binding properties of recombinant CP29
,”
Eur. J. Biochem.
238
,
112
120
(
1996
).
22.
R.
Bassi
,
R.
Croce
,
D.
Cugini
, and
D.
Sandona
, “
Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites
,”
Proc. Natl. Acad. Sci. U. S. A.
96
,
10056
10061
(
1999
).
23.
Feng
,
X.
,
Pan
,
X.
,
M.
Li
,
J.
Pieper
,
W.
Chang
, and
R.
Jankowiak
, “
Spectroscopic study of the light-harvesting CP29 antenna complex of photosystem II—Part I
,”
J. Phys. Chem. B
117
,
6585
6592
(
2013
).
24.
M.
Jassas
,
J.
Chen
,
A.
Khmelnitskiy
,
A. P.
Casazza
,
S.
Santabarbara
, and
R.
Jankowiak
, “
Structure-based exciton Hamiltonian and dynamics for the reconstituted wild-type CP29 protein antenna complex of the photosystem II
,”
J. Phys. Chem. B
122
,
4611
4624
(
2018
).
25.
E.
Belgio
,
A. P.
Casazza
,
G.
Zucchelli
,
F. M.
Garlaschi
, and
R. C.
Jennings
, “
Band shape heterogeneity of the low energy chlorophylls of CP29: Absence of mixed binding sites and excitonic interactions
,”
Biochemistry
49
,
882
892
(
2010
).
26.
E.
Giuffra
,
G.
Zucchelli
,
D.
Sandonà
,
R.
Croce
,
D.
Cugini
,
F. M.
Garlaschi
,
R.
Bassi
, and
R. C.
Jennings
, “
Analysis of some optical properties of a native and reconstituted photosystem II antenna complex, CP29: Pigment binding sites can be occupied by chlorophyll a or chlorophyll b and determine spectral forms
,”
Biochemistry
36
,
12984
12993
(
1997
).
27.
M.
Rätsep
,
J.
Pieper
,
K.-D.
Irrgang
, and
A.
Freiberg
, “
Excitation wavelength-dependent electron-phonon and electron-vibrational coupling in the CP29 antenna complex of green plants
,”
J. Phys. Chem. B
112
,
110
118
(
2008
).
28.
F.
Müh
,
D.
Lindorfer
,
M.
Schmidt am Busch
, and
T.
Renger
, “
Towards a structure-based exciton Hamiltonian for the CP29 antenna of photosystem II
,”
Phys. Chem. Chem. Phys.
16
,
11848
11863
(
2014
).
29.
F.
Müh
and
T.
Renger
, “
Refined structure-based simulation of plant light-harvesting complex II: Linear optical spectra of trimers and aggregates
,”
Biochim. Biophys. Acta, Bioenerg.
1817
(
8
),
1446
1460
(
2012
).
30.
A.
Kell
,
X.
Feng
,
C.
Lin
,
Y.
Yang
,
J.
Li
,
M.
Reus
,
A. R.
Holzwarth
, and
R.
Jankowiak
, “
Charge-transfer character of the low-energy chl a Qy absorption band in aggregated light harvesting complexes II
,”
J. Phys. Chem. B
118
,
6086
6091
(
2014
).
31.
G.
Zucchelli
,
S.
Santabarbara
, and
R. C.
Jennings
, “
The Qy absorption spectrum of the light-harvesting complex II as determined by structure-based analysis of chlorophyll macrocycle deformations
,”
Biochemistry
51
,
2717
2736
(
2012
).
32.
R.
Bassi
,
F.
Rigoni
, and
G. M.
Giacometti
, “
Chlorophyll-binding proteins with antenna function in higher plants and green algae
,”
Photochem. Photobiol.
52
,
1187
1206
(
1990
).
33.
T.
Renger
and
R. A.
Marcus
, “
On the relation of protein dynamics and exciton relaxation in pigment-protein complexes: An estimation of the spectral density and a theory for the calculation of optical spectra
,”
J. Chem. Phys.
116
,
9997
10019
(
2002
).
34.
V.
Mascoli
,
V.
Novoderezhkin
,
N.
Liguori
,
P.
Xu
, and
R.
Croce
, “
Design principles of solar light harvesting in plants: Functional architecture of the monomeric antenna CP29
,”
Biochim. Biophys. Acta, Bioenerg.
1861
,
148156
(
2020
).
35.
H.
Paulsen
,
U.
Rümler
, and
W.
Rüdiger
, “
Reconstitution of pigment-containing complexes from light harvesting chl a/b binding protein overexpressed in Escherichia coli
,”
Planta
181
,
204
211
(
1990
).
36.
B. H.
Davies
, “
Carotenoids
,” in
Chemistry and Biochemistry of Plant Pigments
, edited by
T. W.
Goodwin
(
Academic Press
,
New York
,
1976
), pp.
38
165
.
37.
X.
Feng
,
B.
Neupane
,
K.
Acharya
,
V.
Zazubovich
,
R.
Picorel
,
M.
Seibert
, and
R.
Jankowiak
, “
Spectroscopic study of the CP43 complex and the PSI-CP43′ supercomplex of the cyanobacterium synechocystis PCC 6803
,”
J. Phys. Chem. B
115
,
13339
13349
(
2011
).
38.
M. E.
Madjet
,
A.
Abdurahman
, and
T.
Renger
, “
Intermolecular coulomb couplings from ab initio electrostatic potentials: Application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers
,”
J. Phys. Chem. B
110
,
17268
17281
(
2006
).
39.
J.
Hall
,
T.
Renger
,
R.
Picorel
, and
E.
Krausz
, “
Circularly polarized luminescence spectroscopy reveals low-energy excited states and dynamic localization of vibronic transitions in CP43
,”
Biochim. Biophys. Acta, Bioenerg.
1857
,
115
128
(
2016
).
40.
P.
Xu
,
L. M.
Roy
, and
R.
Croce
, “
Functional organization of photosystem II antenna complexes: CP29 under the spotlight
,”
Biochim. Biophys. Acta, Bioenerg.
1858
,
815
822
(
2017
).
41.
J.
Pieper
,
J.
Voigt
, and
G. J.
Small
, “
Chlorophyll a Franck−Condon factors and excitation energy transfer
,”
J. Phys. Chem. B
103
,
2319
2322
(
1999
).
42.
R.
Jankowiak
,
M.
Reppert
,
V.
Zazubovich
,
J.
Pieper
, and
T.
Reinot
, “
Site selective and single complex laser-based spectroscopies: A window on excited state electronic structure, excitation energy transfer, and Electron−Phonon coupling of selected photosynthetic complexes
,”
Chem. Rev.
111
,
4546
4598
(
2011
).
43.
S.
Jurinovich
,
L.
Viani
,
I. G.
Prandi
,
T.
Renger
, and
B.
Mennucci
, “
Towards an ab initio description of the optical spectra of light-harvesting antenna: Application to the CP29 complex of photosystem II
,”
Phys. Chem. Chem. Phys.
17
,
14405
14416
(
2015
).
44.
I. H.
van Stokkum
,
D. S.
Larsen
, and
R.
van Grondelle
, “
Global and target analysis of time-resolved spectra
,”
Biochim. Biophys. Acta, Bioenerg.
1657
(
2-3
),
82
104
(
2004
).
45.
J.
Pieper
,
K.-D.
Irrgang
,
M.
Rätsep
,
J.
Voigt
,
G.
Renger
, and
G. J.
Small
, “
Assignment of the lowest QY-state and spectral dynamics of the CP29 chlorophyll a/b antenna complex of green plants: A hole-burning study
,”
Photochem. Photobiol.
71
(
5
),
574
581
(
2000
).
46.
A.
Pascal
,
C.
Gradinaru
,
U.
Wacker
,
E.
Peterman
,
F.
Calkoen
,
K.-D.
Irrgang
,
P.
Horton
,
G.
Renger
,
R.
van Grondelle
,
B.
Robert
, and
H.
van Amerongen
, “
Spectroscopic characterization of the spinach Lhcb4 protein (CP29), a minor light-harvesting complex of photosystem II
,”
Eur. J. Biochem.
262
,
817
823
(
1999
).
47.
G. S.
Schlau-Cohen
,
A.
Ishizaki
, and
G. R.
Fleming
, “
Two-dimensional electronic spectroscopy and photosynthesis: Fundamentals and applications to photosynthetic light-harvesting
,”
Chem. Phys.
386
,
1
22
(
2011
).
48.
S.
Savikhin
,
H.
Van Amerongen
,
S. L.
Kwa
,
R.
Van Grondelle
, and
W. S.
Struve
, “
Low-temperature energy transfer in LHC-II trimers from the chl a/b light-harvesting antenna of photosystem II
,”
Biophys. J.
66
,
1597
1603
(
1994
).
49.
M.
Najafi
,
N.
Herascu
,
M.
Seibert
,
R.
Picorel
,
R.
Jankowiak
, and
V.
Zazubovich
, “
Spectral hole burning, recovery, and thermocycling in chlorophyll-protein complexes: Distributions of barriers on the protein energy landscape
,”
J. Phys. Chem. B
116
(
38
),
11780
11790
(
2012
).
50.
A.
Marin
,
F.
Passarini
,
R.
Croce
, and
R.
van Grondelle
, “
Energy transfer pathways in the CP24 and CP26 antenna complexes of higher plant photosystem II: A comparative study
,”
Biophys. J.
99
,
4056
4065
(
2010
).
51.
A.
Pinnola
,
H.
Staleva-Musto
,
S.
Capaldi
,
M.
Ballottari
,
R.
Bassi
, and
T.
Polívka
, “
Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSR1 protein from Physcomitrella patens
,”
Biochim. Biophys. Acta, Bioenerg.
1857
,
1870
1878
(
2016
).

Supplementary Material

You do not currently have access to this content.