In this work, a new parameterization for the Statistical Association Fluid Theory for potentials of Variable Range (SAFT-VR) is coupled to the discrete potential theory to represent the thermodynamic properties of several fluids, ranging from molecular liquids to colloidal-like dispersions. In this way, this version of the SAFT-VR approach can be straightforwardly applied to any kind of either simple or complex fluid. In particular, two interaction potentials, namely, the Lennard-Jones and the hard-core attractive Yukawa potentials, are discretized to study the vapor–liquid equilibrium properties of both molecular and complex liquids, respectively. Our results are assessed with Monte Carlo computer simulations and available and accurate theoretical results based on the self-consistent Ornstein–Zernike approximation.

1.
Y. S.
Wei
and
R. J.
Sadus
, “
Equations of state for the calculation of fluid-phase equilibria
,”
AIChE J.
46
,
169
196
(
2000
).
2.
E. W.
Lemmon
and
R.
Span
, “
Short fundamental equations of state for 20 industrial fluids
,”
J. Chem. Eng. Data
51
,
785
850
(
2006
).
3.
J.
de Hemptinne
and
J.
Ledanois
,
Select Thermodynamic Models for Process Simulation: A Practical Guide Using a Three Steps Methodology
(
Editions Technip
,
2012
).
4.
G.
Kontogeorgis
and
G.
Folas
,
Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories
(
Wiley
,
2009
).
5.
E. A.
Müller
and
K. E.
Gubbins
, “
Molecular-based equations of state for associating fluids: A review of SAFT and related approaches
,”
Ind. Eng. Chem. Res.
40
,
2193
2211
(
2001
).
6.
W. G.
Chapman
,
K. E.
Gubbins
,
G.
Jackson
, and
M.
Radosz
, “
SAFT: Equation-of-state solution model for associating fluids
,”
Fluid Phase Equilib.
52
,
31
38
(
1989
).
7.
M. S.
Wertheim
, “
Fluids with highly directional attractive forces. I. Statistical thermodynamics
,”
J. Stat. Phys.
35
,
19
34
(
1984
).
8.
M. S.
Wertheim
, “
Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations
,”
J. Stat. Phys.
35
,
35
47
(
1984
).
9.
M. S.
Wertheim
, “
Fluids with highly directional attractive forces. III. Multiple attraction sites
,”
J. Stat. Phys.
42
,
459
476
(
1986
).
10.
M. S.
Wertheim
, “
Fluids with highly directional attractive forces. IV. Equilibrium polymerization
,”
J. Stat. Phys.
42
,
477
492
(
1986
).
11.
A.
Gil-Villegas
,
A.
Galindo
,
P. J.
Whitehead
,
S. J.
Mills
,
G.
Jackson
, and
A. N.
Burgess
, “
Statistical associating fluid theory for chain molecules with attractive potentials of variable range
,”
J. Chem. Phys.
106
,
4168
4186
(
1997
).
12.
N. E.
Valadez-Pŕez
,
A. L.
Benavides
,
E.
Schöll-Paschinger
, and
R.
Castaneda-Priego
, “
Phase behavior of colloids and proteins in aqueous suspensions: Theory and computer simulations
,”
J. Chem. Phys.
137
,
084905
(
2012
).
13.
L.
Lee
,
Molecular Thermodynamics of Nonideal Fluids
(
Butterworth-Heinemann
,
2016
).
14.
J. R.
Errington
,
T. M.
Truskett
, and
J.
Mittal
, “
Excess-entropy-based anomalies for a waterlike fluid
,”
J. Chem. Phys.
125
,
244502
(
2006
).
15.
W. P.
Krekelberg
,
T.
Kumar
,
J.
Mittal
,
J. R.
Errington
, and
T. M.
Truskett
, “
Anomalous structure and dynamics of the Gaussian-core fluid
,”
Phys. Rev. E
79
,
031203
(
2009
).
16.
P. D.
Godfrin
,
N. E.
Valadez-Pérez
,
R.
Castañeda-Priego
,
N. J.
Wagner
, and
Y.
Liu
, “
Generalized phase behavior of cluster formation in colloidal dispersions with competing interactions
,”
Soft Matter
10
,
5061
(
2014
).
17.
B. H.
Patel
,
H.
Docherty
,
S.
Varga
,
A.
Galindo
, and
G. C.
Maitland
, “
Generalized equation of state for square-well potentials of variable range
,”
Mol. Phys.
103
,
129
139
(
2005
).
18.
C.
McCabe
and
S. B.
Kiselev
, “
Application of crossover theory to the SAFT-VR equation of state: SAFT-VRX for pure fluids
,”
Ind. Eng. Chem. Res.
43
,
2839
2851
(
2004
).
19.
M. C.
dos Ramos
,
H.
Docherty
,
F. J.
Blas
, and
A.
Galindo
, “
Application of the generalised SAFT-VR approach for long-ranged square-well potentials to model the phase behaviour of real fluids
,”
Fluid Phase Equilib.
276
,
116
126
(
2009
).
20.
T.
Lafitte
,
D.
Bessieres
,
M. M.
Piñeiro
, and
J.-L.
Daridon
, “
Simultaneous estimation of phase behavior and second-derivative properties using the statistical associating fluid theory with variable range approach
,”
J. Chem. Phys.
124
,
024509
(
2006
).
21.
C.
Thomson
,
L.
Lue
, and
M. N.
Bannerman
, “
Mapping continuous potentials to discrete forms
,”
J. Chem. Phys.
140
,
034105
(
2014
).
22.
G. A.
Chapela
,
S. E.
Martínez-Casas
, and
J.
Alejandre
, “
Molecular dynamics for discontinuous potentials
,”
Mol. Phys.
53
,
139
159
(
1984
).
23.
F. A.
Perdomo
and
A.
Gil-Villegas
, “
Molecular thermodynamics of biodiesel fuel compounds
,”
Fluid Phase Equilib.
293
,
182
189
(
2010
).
24.
G. A.
Chapela
,
L. E.
Scriven
, and
H. T.
Davis
, “
Molecular dynamics for discontinuous potential. IV. Lennard-Jonesium
,”
J. Chem. Phys.
91
,
4307
4313
(
1989
).
25.
G. A.
Chapela
,
F.
del Río
,
A. L.
Benavides
, and
J.
Alejandre
, “
Discrete perturbation theory applied to Lennard-Jones and Yukawa potentials
,”
J. Chem. Phys.
133
,
234107
(
2010
).
26.
J.
Torres-Arenas
,
L. A.
Cervantes
,
A. L.
Benavides
,
G. A.
Chapela
, and
F.
del Río
, “
Discrete perturbation theory for the hard-core attractive and repulsive Yukawa potentials
,”
J. Chem. Phys.
132
,
034501
(
2010
).
27.
J. S.
Rowlinson
, “
The Yukawa potential
,”
Physica A
156
,
15
34
(
1989
).
28.
A.
Lang
,
G.
Kahl
,
C. N.
Likos
,
H.
Löwen
, and
M.
Watzlawek
, “
Structure and thermodynamics of square-well and square-shoulder fluids
,”
J. Phys.: Condens. Matter
11
,
10143
(
1999
).
29.
J.
Largo
,
J. R.
Solana
,
S. B.
Yuste
, and
A.
Santos
, “
Pair correlation function of short-ranged square-well fluids
,”
J. Chem. Phys.
122
,
084510
(
2005
).
30.
J. A.
Barker
and
D.
Henderson
, “
Perturbation theory and equation of state for fluids: The square-well potential
,”
J. Chem. Phys.
47
,
2856
2861
(
1967
).
31.
I. G.
Economou
, “
Statistical associating fluid theory: A successful model for the calculation of thermodynamic and phase equilibrium properties of complex fluid mixtures
,”
Ind. Eng. Chem. Res.
41
,
953
962
(
2002
).
32.
M. E.
Johnson
,
T.
Head-Gordon
, and
A. A.
Louis
, “
Representability problems for coarse-grained water potentials
,”
J. Chem. Phys.
126
,
144509
(
2007
).
33.
A.
Torres-Carbajal
and
R.
Castañeda-Priego
, “
Characterisation of the thermodynamics, structure and dynamics of a water-like model in 2- and 3-dimensions
,”
Phys. Chem. Chem. Phys.
18
,
17335
17340
(
2016
).
34.
H.-J.
Qian
,
P.
Carbone
,
X.
Chen
,
H. A.
Karimi-Varzaneh
,
C. C.
Liew
, and
F.
Müller-Plathe
, “
Temperature-transferable coarse-grained potentials for ethylbenzene, polystyrene, and their mixtures
,”
Macromolecules
41
,
9919
9929
(
2008
).
35.
A. L.
Benavides
and
A.
Gil-Villegas
, “
The thermodynamics of molecules with discrete potentials
,”
Mol. Phys.
97
,
1225
1232
(
1999
).
36.
A. L.
Benavides
and
A.
Gil-Villegas
,
Developments in Mathematical and Experimental Physics
(
Springer US
,
2003
), pp.
235
241
.
37.
A. L.
Benavides
,
L. A.
Cervantes
, and
J.
Torres
, “
Discrete perturbation theory for the Jagla ramp potential
,”
J. Phys. Chem. C
111
,
16006
16012
(
2007
).
38.
G.
Jiménez
,
S.
Santillán
,
C.
Avendaño
,
M.
Castro
, and
A.
Gil-Villegas
, “
Molecular thermodynamics of adsorption using discrete-potential systems
,”
Oil Gas Sci. Technol.
63
,
329
341
(
2008
).
39.
I.
Guillén-Escamilla
,
M.
Chávez-Páez
, and
R.
Castañeda-Priego
, “
Structure and thermodynamics of discrete potential fluids in the OZ–HMSA formalism
,”
J. Phys.: Condens. Matter
19
,
086224
(
2007
).
40.
T.
Lafitte
,
A.
Apostolakou
,
C.
Avendaño
,
A.
Galindo
,
C. S.
Adjiman
,
E. A.
Müller
, and
G.
Jackson
, “
Accurate statistical associating fluid theory for chain molecules formed from Mie segments
,”
J. Chem. Phys.
139
,
154504
(
2013
).
41.
L. A.
Davies
,
A.
Gil-Villegas
, and
G.
Jackson
, “
Describing the properties of chains of segments interacting via soft-core potentials of variable range with the SAFT-VR approach
,”
Int. J. Thermophys.
19
,
675
686
(
1998
).
42.
L. A.
Davies
,
A.
Gil-Villegas
,
G.
Jackson
,
S.
Calero
, and
S.
Lago
, “
Phase equilibria of a square-well monomer-dimer mixture: Gibbs ensemble computer simulation and statistical associating fluid theory for potentials of variable range
,”
Phys. Rev. E
57
,
2035
2044
(
1998
).
43.
C.
McCabe
,
A.
Gil-Villegas
, and
G.
Jackson
, “
Gibbs ensemble computer simulation and SAFT-VR theory of non-conformal square-well monomer–dimer mixtures
,”
Chem. Phys. Lett.
303
,
27
36
(
1999
).
44.
C.
McCabe
and
G.
Jackson
, “
SAFT-VR modelling of the phase equilibrium of long-chain n-alkanes
,”
Phys. Chem. Chem. Phys.
1
,
2057
2064
(
1999
).
45.
C.
McCabe
,
A.
Galindo
,
A.
Gil-Villegas
, and
G.
Jackson
, “
Predicting the high-pressure phase equilibria of binary mixtures of perfluoro-n-alkanes + n-alkanes using the SAFT-VR approach
,”
J. Phys. Chem. B
102
,
8060
8069
(
1998
).
46.
A.
Gil-Villegas
,
A.
Galindo
, and
G.
Jackson
, “
A statistical associating fluid theory for electrolyte solutions (SAFT-VRE)
,”
Mol. Phys.
99
,
531
546
(
2001
).
47.
G. N. I.
Clark
,
A. J.
Haslam
,
A.
Galindo
, and
G.
Jackson
, “
Developing optimal Wertheim-like models of water for use in statistical associating fluid theory (SAFT) and related approaches
,”
Mol. Phys.
104
,
3561
3581
(
2006
).
48.
P.
Paricaud
,
A.
Galindo
, and
G.
Jackson
, “
Recent advances in the use of the SAFT approach in describing electrolytes, interfaces, liquid crystals and polymers
,” in
Proceedings of the Ninth International Conference on Properties and Phase Equilibria for Product and Process Design
[
Fluid Phase Equilib.
194-197
,
87
96
(
2002
)].
49.
L. A.
Cervantes
,
G.
Jaime-Muñoz
,
A. L.
Benavides
,
J.
Torres-Arenas
, and
F.
Sastre
, “
Discrete perturbation theory for continuous soft-core potential fluids
,”
J. Chem. Phys.
142
,
114501
(
2015
).
50.
F.
Gámez
and
A. L.
Benavides
, “
Perturbation theory for non-spherical fluids based on discretization of the interactions
,”
J. Chem. Phys.
138
,
124901
(
2013
).
51.
Z.
Jin
,
Y.
Tang
, and
J.
Wu
, “
A perturbative density functional theory for square-well fluids
,”
J. Chem. Phys.
134
,
174702
(
2011
).
52.
F.
Platten
,
N. E.
Valadez-Pérez
,
R.
Castañeda-Priego
, and
S. U.
Egelhaaf
, “
Extended law of corresponding states for protein solutions
,”
J. Chem. Phys.
142
,
174905
(
2015
).
53.
S. P.
Hlushak
,
P. A.
Hlushak
, and
A.
Trokhymchuk
, “
An improved first-order mean spherical approximation theory for the square-shoulder fluid
,”
J. Chem. Phys.
138
,
164107
(
2013
).
54.
M.
Khanpour
and
R.
Hashim
, “
Pair correlation function from the Barker–Henderson perturbation theory of fluids: The structure of square-well and square-shoulder potentials
,”
Phys. Chem. Liq.
51
,
203
217
(
2013
).
55.
R.
Espíndola-Heredia
,
F.
del Río
, and
A.
Malijevsky
, “
Optimized equation of the state of the square-well fluid of variable range based on a fourth-order free-energy expansion
,”
J. Chem. Phys.
130
,
024509
(
2009
).
56.
A. Z.
Panagiotopoulos
, “
Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble
,”
Mol. Phys.
61
,
813
826
(
1987
).
57.
L.
Vega
,
E.
de Miguel
,
L. F.
Rull
,
G.
Jackson
, and
I. A.
McLure
, “
Phase equilibria and critical behavior of square-well fluids of variable width by Gibbs ensemble Monte Carlo simulation
,”
J. Chem. Phys.
96
,
2296
2305
(
1992
).
58.
A. Z.
Panagiotopoulos
, “
Direct determination of fluid phase equilibria by simulation in the Gibbs ensemble: A review
,”
Mol. Simul.
9
,
1
23
(
1992
).
59.
L. F.
Rull
,
G.
Jackson
, and
B.
Smit
, “
The condition of microscopic reversibility in Gibbs ensemble Monte Carlo simulations of phase equilibria
,”
Mol. Phys.
85
,
435
447
(
1995
).
60.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, Computational Science Series (
Elsevier Science
,
2001
).
61.
A. M.
Ferrenberg
and
D. P.
Landau
, “
Critical behavior of the three-dimensional Ising model: A high-resolution Monte Carlo study
,”
Phys. Rev. B
44
,
5081
5091
(
1991
).
62.
J.
Chang
and
S. I.
Sandler
, “
A completely analytic perturbation theory for the square-well fluid of variable well width
,”
Mol. Phys.
81
,
745
765
(
1994
).
63.
F.
Sastre
,
E.
Moreno-Hilario
,
M. G.
Sotelo-Serna
, and
A.
Gil-Villegas
, “
Microcanonical-ensemble computer simulation of the high-temperature expansion coefficients of the Helmholtz free energy of a square-well fluid
,”
Mol. Phys.
116
,
351
360
(
2018
).
64.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Elsevier
,
1990
).
65.
A.
Busigin
and
C. R.
Phillips
, “
Efficient Newton-Raphson and implicit Euler methods for solving the HNC equation
,”
Mol. Phys.
76
,
89
101
(
1992
).
66.
H.-B.
An
and
Z.-Z.
Bai
, “
A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations
,”
Appl. Numer. Math.
57
,
235
252
(
2007
).
67.
J. A.
Barker
and
D.
Henderson
, “
What is ‘liquid’? Understanding the states of matter
,”
Rev. Mod. Phys.
48
,
587
671
(
1976
).
68.
Z.
Michalewicz
,
Genetic Algorithms and Data Structures-Evolution Programs
(
Springer Science & Business Media
,
1996
).
69.
F. A.
Perdomo
,
L.
Perdomo
,
B. M.
Millán
, and
J. L.
Aragón
, “
Design and improvement of biodiesel fuels blends by optimization of their molecular structures and compositions
,”
Chem. Eng. Res. Des.
92
,
1482
1494
(
2014
), Green Processes and Eco-technologies: Focus on Biofuels.
70.
D.
Rosenbaum
,
P. C.
Zamora
, and
C. F.
Zukoski
, “
Phase behavior of small attractive colloidal particles
,”
Phys. Rev. Lett.
76
,
150
153
(
1996
).
71.
T.
Reed
and
K.
Gubbins
,
Applied Statistical Mechanics: Thermodynamic and Transport Properties of Fluids
, Chemical Engineering Series (
McGraw-Hill
,
1973
).
72.
M. J. P.
Nijmeijer
,
A. F.
Bakker
,
C.
Bruin
, and
J. H.
Sikkenk
, “
A molecular dynamics simulation of the Lennard-Jones liquid vapor interface
,”
J. Chem. Phys.
89
,
3789
3792
(
1988
).
73.
D.
Pini
,
G.
Stell
, and
N. B.
Wilding
, “
A liquid-state theory that remains successful in the critical region
,”
Mol. Phys.
95
,
483
494
(
1998
).
74.
D.
Pini
,
G.
Stell
, and
R.
Dickman
, “
Thermodynamically self-consistent theory of structure for three-dimensional lattice gases
,”
Phys. Rev. E
57
,
2862
2871
(
1998
).
75.
A.
Malijevský
and
S.
Labík
, “
The bridge function for hard spheres
,”
Mol. Phys.
60
,
663
669
(
1987
).
76.
L.
Verlet
,
J.-J.
Weis
, and
S.
Liquids
, “
Equilibrium theory of simple liquids
,”
Phys. Rev. A
5
,
939
952
(
1972
).

Supplementary Material

You do not currently have access to this content.