Quantum plasmonics extends cavity quantum electrodynamics (cQED) concepts to the nanoscale, benefiting from the strongly subwavelength confinement of the plasmon modes supported by metal nanostructures. In this work, we describe in detail collective strong coupling to a plasmonic nanocavity. Similarities and differences to cQED are emphasized. We notably observe that the Rabi splitting can strongly deviate from the standard NeΔΩ1 law, where Ne is the number of emitters and ΔΩ1 is the Rabi splitting for a single emitter. In addition, we discuss the collective Lamb shift and the role of quantum corrections to the emission spectra.

1.
K. J.
Vahala
, “
Optical microcavities
,”
Nature
424
,
839
(
2003
).
2.
N.
Somaschi
,
V.
Giesz
,
L.
De Santis
,
J. C.
Loredo
,
M. P.
Almeida
,
G.
Hornecker
,
S. L.
Portalupi
,
T.
Grange
,
C.
Antón
,
J.
Demory
,
C.
Gómez
,
I.
Sagnes
,
N. D.
Lanzillotti-Kimura
,
A.
Lemaítre
,
A.
Auffeves
,
A. G.
White
,
L.
Lanco
, and
P.
Senellart
, “
Near-optimal single-photon sources in the solid state
,”
Nat. Photonics
10
,
340
(
2016
).
3.
A.
Faraon
,
I.
Fushman
,
D.
Englund
,
N.
stoltz
,
P.
Petroff
, and
J.
Vučković
, “
Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade
,”
Nat. Phys.
4
,
859
(
2008
).
4.
A.
Shalabney
,
J.
George
,
J.
Hutchison
,
G.
Pupillo
,
C.
Genet
, and
T.
Ebbesen
, “
Coherent coupling of molecular resonators with a microcavity mode
,”
Nat. Commun.
6
,
5981
(
2015
).
5.
F.
Kato
,
H.
Minamimoto
,
F.
Nagasawa
,
Y. S.
Yamamoto
,
T.
Itoh
, and
K.
Murakoshi
, “
Active tuning of strong coupling states between dye excitons and localized surface plasmons via electrochemical potential control
,”
ACS Photonics
5
,
788
(
2018
).
6.
F.
Herrera
and
J.
Owrutsky
, “
Molecular polaritons for controlling chemistry with quantum optics
,”
J. Chem. Phys.
152
,
100902
(
2020
).
7.
J.
Flick
and
P.
Narang
, “
Ab initio polaritonic potential-energy surfaces for excited-state nanophotonics and polaritonic chemistry
,”
J. Phys. Chem.
153
,
094116
(
2020
).
8.
J.
Flick
,
N.
Rivera
, and
P.
Narang
, “
Strong light-matter coupling in quantum chemistry and quantum photonics
,”
Nanophotonics
7
,
1479
(
2018
).
9.
T.
Hümmer
,
F. J.
García-Vidal
,
L.
Martín-Moreno
, and
D.
Zueco
, “
Weak and strong coupling regimes in plasmonic QED
,”
Phys. Rev. B
87
,
115419
(
2013
).
10.
P.
Törmä
and
W.
Barnes
, “
Strong coupling between surface plasmon polaritons and emitters: A review
,”
Rep. Prog. Phys.
78
,
013901
(
2015
).
11.
P.
Ginzburg
, “
Cavity quantum electrodynamics in application to plasmonics and metamaterials
,”
Rev. Phys.
1
,
120
(
2016
).
12.
P.
Vasa
and
C.
Lienau
, “
Strong light-matter interaction in quantum emitter/metal hybrid nanostructures
,”
ACS Photonics
5
,
2
(
2017
).
13.
S. I.
Bozhevolnyi
and
J. B.
Khurgin
, “
The case for quantum plasmonics
,”
Nat. Photonics
11
,
398
(
2017
).
14.
P.
Lalanne
,
W.
Yan
,
K.
Vynck
,
C.
Sauvan
, and
J.-P.
Hugonin
, “
Light interaction with photonic and plasmonic resonances
,”
Laser Photonics Rev.
12
,
1700113
(
2018
).
15.
C. L.
Cortes
,
M.
Otten
, and
S. K.
Gray
, “
Non-Hermitian approach for quantum plasmonics
,”
J. Chem. Phys.
152
,
084105
(
2020
).
16.
G.
Zengin
,
M.
Wersäl
,
S.
Nilsson
,
T.
Antosiewicz
,
M.
Käll
, and
T.
Shegai
, “
Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions
,”
Phys. Rev. Lett.
114
,
157401
(
2015
).
17.
D. S.
Dovzhenko
,
S. V.
Ryabchuk
,
Y. P.
Rakovich
, and
I. R.
Nabiev
, “
Light-matter interaction in the strong coupling regime: Configurations, conditions, applications
,”
Nanoscale
10
,
3589
(
2018
).
18.
L.
Knoll
,
S.
Scheel
, and
D.
Welsch
, “
QED in dispersing and absorbing media
,” in
Coherence and Statistics of Photons and Atoms
(
John Wiley & Sons, Inc.
,
2001
); For update see arXiv:quant-ph/0006121.
19.
H.
Varguet
,
S.
Guérin
,
H.
Jauslin
, and
G.
Colas des Francs
, “
Cooperative emission in quantum plasmonics superradiance
,”
Phys. Rev. B
100
,
041115(R)
(
2019
).
20.
A.
Delga
,
J.
Feist
,
J.
Bravo-Abad
, and
F. J.
Garcia-Vidal
, “
Quantum emitters near a metal nanoparticle: Strong coupling and quenching
,”
Phys. Rev. Lett.
112
,
253601
(
2014
).
21.
H. T.
Dung
,
L.
Knöll
, and
D.-G.
Welsch
, “
Resonant dipole-dipole interaction in the presence of dispersing and absorbing surroundings
,”
Phys. Rev. A
66
,
063810
(
2002
).
22.
A.
Drezet
, “
Dual-Lagrangian description adapted to quantum optics in dispersive and dissipative dielectric media
,”
Phys. Rev. A
94
,
053826
(
2017
).
23.
A.
Drezet
, “
Quantizing polaritons in inhomogeneous dissipative systems
,”
Phys. Rev. A
95
,
023831
(
2017
).
24.
V.
Dorier
,
J.
Lampart
,
S.
Guérin
, and
H. R.
Jauslin
, “
Canonical quantization for quantum plasmonics with finite nanostructures
,”
Phys. Rev. A
100
,
042111
(
2019
).
25.
H.
Varguet
,
B.
Rousseaux
,
D.
Dzsotjan
,
H.
Jauslin
,
S.
Guérin
, and
G.
Colas des Francs
, “
Non-Hermitian Hamiltonian description for quantum plasmonics: From dissipative dressed atom picture to Fano states
,”
J. Phys. B: At., Mol. Opt. Phys.
52
,
055404
(
2019
).
26.
V.
Dorier
,
S.
Guérin
, and
H.
Jauslin
, “
Critical review of quantum plasmonic models for finite-size media
,”
Nanophotonics
9
,
3899
(
2020
).
27.
D.
Dzsotjan
,
A. S.
Sorensen
, and
M.
Fleischhauer
, “
Dipole-dipole shift of quantum emitters coupled to surface plasmons of a nanowire
,”
Phys. Rev. B
84
,
075419
(
2011
).
28.
M.
Tian
,
Y.-G.
Huang
,
S.-S.
Wen
,
X.-Y.
Wang
,
H.
Yang
,
J.-Z.
Peng
, and
H. P.
Zhao
, “
Level shift and decay dynamics of a quantum emitter around a plasmonic nanostructure
,”
Phys. Rev. A
99
,
053844
(
2019
).
29.
C.
van Vlack
,
P.
Kristensen
, and
S.
Hughes
, “
Spontaneous emission spectra and quantum light-matter interaction from a strongly coupled quantum dot metal nanoparticle
,”
Phys. Rev. B
85
,
075303
(
2012
).
30.
A.
Delga
,
J.
Feist
,
J.
Bravo-Abad
, and
F.
Garcia-Vidal
, “
Theory of strong coupling between quantum emitters and localized surface plasmons
,”
J. Opt.
16
,
114018
(
2014
).
31.
H.
Varguet
,
B.
Rousseaux
,
D.
Dzsotjan
,
H.
Jauslin
,
S.
Guérin
, and
G.
Colas des Francs
, “
Dressed states of a quantum emitter strongly coupled to a metal nanoparticle
,”
Opt. Lett.
41
,
4480
(
2016
).
32.
D.
Dzsotjan
,
B.
Rousseaux
,
H. R.
Jauslin
,
G.
Colas des Francs
,
C.
Couteau
, and
S.
Guérin
, “
Mode-selective quantization and multimodal effective models for spherically layered systems
,”
Phys. Rev. A
94
,
023818
(
2016
).
33.
M.
Gross
and
S.
Haroche
, “
Superradiance: An essay on the theory of collective spontaneous emission
,”
Phys. Rep.
93
,
301
(
1982
).
34.
R.
Annavarapu
, “
Singular value decomposition and the centrality of Löwdin orthogonalizations
,”
Am. J. Comput. Appl. Math.
3
,
33
(
2013
).
35.
A.
Castellini
,
H. R.
Jauslin
,
B.
Rousseaux
,
D.
Dzsotjan
,
G.
Colas des Francs
,
A.
Messina
, and
S.
Guérin
, “
Quantum plasmonics with multi-emitters: Application to adiabatic control
,”
Eur. Phys. J. D
72
,
223
(
2018
).
36.
D.
O’Dell
,
S.
Giovanazzi
, and
C.
Eberlein
, “
Exact hydrodynamics of a trapped dipolar Bose-Einstein condensate
,”
Phys. Rev. Lett.
92
,
250401
(
2004
).
37.
B.
Rousseaux
,
D.
Baranov
,
T. J.
Antosiewicz
,
T.
Shegai
, and
G.
Johansson
, “
Strong coupling as an interplay of quantum emitter hybridization with plasmonic dark and bright modes
,”
Phys. Rev. Res.
2
,
033056
(
2020
).
38.
T.
Rossi
,
T.
Shegai
,
P.
Erhart
, and
T. J.
Antosiewicz
, “
Strong plasmon-molecule coupling at the nanoscale revealed by first-principles modeling
,”
Nat. Commun.
10
,
3336
(
2019
).
39.
A.
Kockum
,
A.
Miranowicz
,
S. D.
Liberato
,
S.
Savasta
, and
F.
Nori
, “
Ultrastrong coupling between light and matter
,”
Nat. Rev. Phys.
1
,
19
(
2019
).
40.
N.
Rivera
,
J.
Flick
, and
P.
Narang
, “
Strong light-matter coupling in quantum chemistry and quantum photonics
,”
Phys. Rev. Lett.
122
,
193603
(
2019
).
41.
J. M.
Wylie
and
J. E.
Sipe
, “
Quantum electrodynamics near an interface II
,”
Phys. Rev. A
32
,
2030
(
1985
).
42.
H.
Metiu
, “
Surface enhanced spectroscopy
,”
Prog. Surf. Sci.
17
,
153
(
1984
).
43.
C.
Girard
,
O. J. F.
Martin
, and
A.
Dereux
, “
Molecular lifetime changes induced by nanometer scale optical fields
,”
Phys. Rev. Lett.
75
,
3098
(
1995
).
44.
Y.-J.
Zhao
,
M.
Tian
,
X.-Y.
Wang
,
H.
Yang
,
H.
Zhao
, and
Y.-G.
Huang
, “
Quasi-static method and finite element method for obtaining the modifications of the spontaneous emission rate and energy level shift near a plasmonic nanostructure
,”
Opt. Express
26
,
1390
(
2018
).
45.
J.
Hakami
,
L.
Wang
, and
M.
Zubairy
, “
Spectral properties of a strongly coupled quantum-dot-metal-nanoparticle system
,”
Phys. Rev. A
89
,
053835
(
2014
).
46.
N.
Iliopoulos
,
I.
Thanopulos
,
V.
Yannopapas
, and
E.
Paspalakis
, “
Quantum correlations in quantum emitters strongly coupled with metallic nanoparticles
,”
Quantum Inf. Process.
18
,
110
(
2019
).
47.
L.
Novotny
and
B.
Hecht
,
Principles of Nano-Optics
(
Cambridge University Press
,
2012
).
You do not currently have access to this content.