Charge transfer plasmons (CTPs) that occur in different topology and dimensionality arrays of metallic nanoparticles (NPs) linked by narrow molecular bridges are studied. The occurrence of CTPs in such arrays is related to the ballistic motion of electrons in thin linkers with the conductivity that is purely imaginary, in contrast to the case of conventional CTPs, where metallic NPs are linked by thick bridges with the real optical conductivity caused by carrier scattering. An original hybrid model for describing the CTPs with such linkers has been further developed. For different NP arrays, either a general analytical expression or a numerical solution has been obtained for the CTP frequencies. It has been shown that the CTP frequencies lie in the IR spectral range and depend on both the linker conductivity and the system geometry. It is found that the electron currents of plasmon oscillations correspond to minor charge displacements of only few electrons. It has been established that the interaction of the CTPs with an external electromagnetic field strongly depends on the symmetry of the electron currents in the linkers, which, in turn, are fully governed by the symmetry of the investigated system. The extended model and the analytical expressions for the CTPs frequencies have been compared with the conventional finite difference time domain simulations. It is argued that applications of this novel type of plasmon may have wide ramifications in the area of chemical sensing.

1.
A.
Uddin
and
X.
Yang
, “
Surface plasmonic effects on organic solar cells
,”
J. Nanosci. Nanotechnol.
14
,
1099
1119
(
2014
).
2.
J.
Liu
,
H.
He
,
D.
Xiao
,
S.
Yin
,
W.
Ji
,
S.
Jiang
,
D.
Luo
,
B.
Wang
, and
Y.
Liu
, “
Recent advances of plasmonic nanoparticles and their applications
,”
Materials
11
,
1833
(
2018
).
3.
F.
Parveen
,
B.
Sannakki
,
M. V.
Mandke
, and
H. M.
Pathan
, “
Copper nanoparticles: Synthesis methods and its light harvesting performance
,”
Sol. Energy Mater. Sol. Cells
144
,
371
382
(
2016
).
4.
S.
Gwo
,
H.-Y.
Chen
,
M.-H.
Lin
,
L.
Sun
, and
X.
Li
, “
Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics
,”
Chem. Soc. Rev.
45
,
5672
5716
(
2016
).
5.
K.
Ueno
,
T.
Oshikiri
,
Q.
Sun
,
X.
Shi
, and
H.
Misawa
, “
Solid-state plasmonic solar cells
,”
Chem. Rev.
118
,
2955
2993
(
2018
).
6.
N.
Venugopal
,
V. S.
Gerasimov
,
A. E.
Ershov
,
S. V.
Karpov
, and
S. P.
Polyutov
, “
Titanium nitride as light trapping plasmonic material in silicon solar cell
,”
Opt. Mater.
72
,
397
402
(
2017
).
7.
M.
Valenti
,
M. P.
Jonsson
,
G.
Biskos
,
A.
Schmidt-Ott
, and
W. A.
Smith
, “
Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting
,”
J. Mater. Chem. A
4
,
17891
17912
(
2016
).
8.
S.
Linic
,
U.
Aslam
,
C.
Boerigter
, and
M.
Morabito
, “
Photochemical transformations on plasmonic metal nanoparticles
,”
Nat. Mater.
14
,
567
576
(
2015
).
9.
C.
Deeb
and
J.-L.
Pelouard
, “
Plasmon lasers: Coherent nanoscopic light sources
,”
Phys. Chem. Chem. Phys.
19
,
29731
29741
(
2017
).
10.
V. S.
Gerasimov
,
A. E.
Ershov
,
R. G.
Bikbaev
,
I. L.
Rasskazov
,
I. V.
Timofeev
,
S. P.
Polyutov
, and
S. V.
Karpov
, “
Engineering mode hybridization in regular arrays of plasmonic nanoparticles embedded in 1D photonic crystal
,”
J. Quant. Spectrosc. Radiat. Transfer
224
,
303
308
(
2019
).
11.
V. I.
Zakomirnyi
,
I. L.
Rasskazov
,
V. S.
Gerasimov
,
A. E.
Ershov
,
S. P.
Polyutov
, and
S. V.
Karpov
, “
Refractory titanium nitride two-dimensional structures with extremely narrow surface lattice resonances at telecommunication wavelengths
,”
Appl. Phys. Lett.
111
,
123107
(
2017
).
12.
K. A.
Willets
,
A. J.
Wilson
,
V.
Sundaresan
, and
P. B.
Joshi
, “
Super-resolution imaging and plasmonics
,”
Chem. Rev.
117
,
7538
7582
(
2017
).
13.
D. N.
Maksimov
,
V. S.
Gerasimov
,
S.
Romano
, and
S. P.
Polyutov
, “
Refractive index sensing with optical bound states in the continuum
,”
Opt. Express
28
,
38907
(
2020
).
14.
L.
Guo
,
J. A.
Jackman
,
H.-H.
Yang
,
P.
Chen
,
N.-J.
Cho
, and
D.-H.
Kim
, “
Strategies for enhancing the sensitivity of plasmonic nanosensors
,”
Nano Today
10
,
213
239
(
2015
).
15.
A. N.
Koya
and
J.
Lin
, “
Charge transfer plasmons: Recent theoretical and experimental developments
,”
Appl. Phys. Rev.
4
,
021104
(
2017
).
16.
N.
Elahi
,
M.
Kamali
, and
M. H.
Baghersad
, “
Recent biomedical applications of gold nanoparticles: A review
,”
Talanta
184
,
537
556
(
2018
).
17.
Z.
Farka
,
T.
Juřík
,
D.
Kovář
,
L.
Trnková
, and
P.
Skládal
, “
Nanoparticle-based immunochemical biosensors and assays: Recent advances and challenges
,”
Chem. Rev.
117
,
9973
10042
(
2017
).
18.
J.
Olson
,
S.
Dominguez-Medina
,
A.
Hoggard
,
L.-Y.
Wang
,
W.-S.
Chang
, and
S.
Link
, “
Optical characterization of single plasmonic nanoparticles
,”
Chem. Soc. Rev.
44
,
40
57
(
2015
).
19.
V. I.
Zakomirnyi
,
I. L.
Rasskazov
,
S. V.
Karpov
, and
S. P.
Polyutov
, “
New ideally absorbing Au plasmonic nanostructures for biomedical applications
,”
J. Quant. Spectrosc. Radiat. Transfer
187
,
54
61
(
2017
).
20.
A. D.
Utyushev
,
I. L.
Isaev
,
V. S.
Gerasimov
,
A. E.
Ershov
,
V. I.
Zakomirnyi
,
I. L.
Rasskazov
,
S. P.
Polyutov
,
H.
Ågren
, and
S. V.
Karpov
, “
Engineering novel tunable optical high-Q nanoparticle array filters for a wide range of wavelengths
,”
Opt. Express
28
,
1426
(
2020
).
21.
S. G.
Moiseev
,
I. A.
Glukhov
,
Y. S.
Dadoenkova
, and
F. F. L.
Bentivegna
, “
Polarization-selective defect mode amplification in a photonic crystal with intracavity 2D arrays of metallic nanoparticles
,”
J. Opt. Soc. Am. B
36
,
1645
1652
(
2019
).
22.
S.
Bernadotte
,
F.
Evers
, and
C. R.
Jacob
, “
Plasmons in molecules
,”
J. Phys. Chem. C
117
,
1863
1878
(
2013
).
23.
E.
Runge
and
E. K. U.
Gross
, “
Density-functional theory for time-dependent systems
,”
Phys. Rev. Lett.
52
,
997
1000
(
1984
).
24.
F.
Wen
,
Y.
Zhang
,
S.
Gottheim
,
N. S.
King
,
Y.
Zhang
,
P.
Nordlander
, and
N. J.
Halas
, “
Charge transfer plasmons: Optical frequency conductances and tunable infrared resonances
,”
ACS Nano
9
,
6428
6435
(
2015
).
25.
V.
Kulkarni
and
A.
Manjavacas
, “
Quantum effects in charge transfer plasmons
,”
ACS Photonics
2
,
987
992
(
2015
).
26.
T. P.
Rossi
,
A.
Zugarramurdi
,
M. J.
Puska
, and
R. M.
Nieminen
, “
Quantized evolution of the plasmonic response in a stretched nanorod
,”
Phys. Rev. Lett.
115
,
236804
(
20150
); arXiv:1509.01140.
27.
F.
Marchesin
,
P.
Koval
,
M.
Barbry
,
J.
Aizpurua
, and
D.
Sánchez-Portal
, “
Plasmonic response of metallic nanojunctions driven by single atom motion: Quantum transport revealed in optics
,”
ACS Photonics
3
,
269
277
(
2016
).
28.
A.
Horrer
,
Y.
Zhang
,
D.
Gérard
,
J.
Béal
,
M.
Kociak
,
J.
Plain
, and
R.
Bachelot
, “
Local optical chirality induced by near-field mode interference in achiral plasmonic metamolecules
,”
Nano Lett.
20
,
509
516
(
2020
).
29.
R.
Esteban
,
A. G.
Borisov
,
P.
Nordlander
, and
J.
Aizpurua
, “
Bridging quantum and classical plasmonics with a quantum-corrected model
,”
Nat. Commun.
3
,
825
(
2012
).
30.
R.
Esteban
,
A.
Zugarramurdi
,
P.
Zhang
,
P.
Nordlander
,
F. J.
García-Vidal
,
A. G.
Borisov
, and
J.
Aizpurua
, “
A classical treatment of optical tunneling in plasmonic gaps: Extending the quantum corrected model to practical situations
,”
Faraday Discuss.
178
,
151
183
(
2015
).
31.
W.
Zhu
,
R.
Esteban
,
A. G.
Borisov
,
J. J.
Baumberg
,
P.
Nordlander
,
H. J.
Lezec
,
J.
Aizpurua
, and
K. B.
Crozier
, “
Quantum mechanical effects in plasmonic structures with subnanometre gaps
,”
Nat. Commun.
7
,
11495
(
2016
).
32.
S. F.
Tan
,
L.
Wu
,
J. K. W.
Yang
,
P.
Bai
,
M.
Bosman
, and
C. A.
Nijhuis
, “
Quantum plasmon resonances controlled by molecular tunnel junctions
,”
Science
343
,
1496
(
2014
).
33.
F.
Benz
,
C.
Tserkezis
,
L. O.
Herrmann
,
B.
de Nijs
,
A.
Sanders
,
D. O.
Sigle
,
L.
Pukenas
,
S. D.
Evans
,
J.
Aizpurua
, and
J. J.
Baumberg
, “
Nanooptics of molecular-shunted plasmonic nanojunctions
,”
Nano Lett.
15
,
669
674
(
2015
).
34.
A. S.
Fedorov
,
P. O.
Krasnov
,
M. A.
Visotin
,
F. N.
Tomilin
,
S. P.
Polyutov
, and
H.
Ågren
, “
Charge-transfer plasmons with narrow conductive molecular bridges: A quantum-classical theory
,”
J. Chem. Phys.
151
,
244125
(
2019
).
35.
A. S.
Fedorov
,
P. O.
Krasnov
,
M. A.
Visotin
,
F. N.
Tomilin
, and
S. P.
Polyutov
, “
Thermoelectric and plasmonic properties of metal nanoparticles linked by conductive molecular bridges
,”
Phys. Status Solidi B
257
,
2000249
(
2020
).
36.
R.
Landauer
, “
Electrical resistance of disordered one-dimensional lattices
,”
Philos. Mag.
21
,
863
867
(
1970
).
37.
W. R.
Smythe
,
Static and Dynamic Electricity
(
Amazon.com
,
1950
).
38.
V. A.
Saranin
, “
On the interaction of two electrically charged conducting balls
,”
Phys.-Usp.
42
,
385
390
(
1999
).
39.
Lumerical Solutions, FDTD Solutions,
2020
.
40.
L. D.
Landau
,
L. P.
Pitaevskii
, and
E. M.
Lifshitz
,
Electrodynamics of Continuous Media
, 2nd ed., Course of Theoretical Physics Vol. 2 (
Butterworth-Heinemann
,
1984
).
41.
R. L.
Olmon
,
B.
Slovick
,
T. W.
Johnson
,
D.
Shelton
,
S.-H.
Oh
,
G. D.
Boreman
, and
M. B.
Raschke
, “
Optical dielectric function of gold
,”
Phys. Rev. B
86
,
235147
(
2012
).
You do not currently have access to this content.