The present work introduces a new form of explicitly correlated factor in the context of the transcorrelated methods. The new correlation factor is obtained from the r12 ≈ 0 mathematical analysis of the transcorrelated Hamiltonian, and its analytical form is obtained such that the leading order in 1/r12 of the scalar part of the effective two-electron potential reproduces the long-range interaction of the range-separated density functional theory. The resulting correlation factor exactly imposes the cusp and is tuned by a unique parameter μ, which controls both the depth of the coulomb hole and its typical range in r12. The transcorrelated Hamiltonian obtained with such a new correlation factor has a straightforward analytical expression depending on the same parameter μ, and its physical contents continuously change by varying μ: One can change from a non-divergent repulsive Hamiltonian at large μ to a purely attractive one at small μ. We investigate the convergence of the ground state eigenvalues and right eigenvectors of such a new transcorrelated Hamiltonian as a function of the basis set and as a function of μ on a series of two-electron systems. We found that the convergence toward the complete basis set is much faster for quite a wide range of values of μ. We also propose a specific value of μ, which essentially reproduces the results obtained with the frozen Gaussian geminal introduced by Ten-no [Chem. Phys. Lett. 330, 169 (2000)].

1.
C. F.
Bender
and
E. R.
Davidson
,
Phys. Rev.
183
,
23
(
1969
).
2.
B.
Huron
,
J. P.
Malrieu
, and
P.
Rancurel
,
J. Chem. Phys.
58
,
5745
(
1973
).
3.
R. J.
Buenker
and
S. D.
Peyerimhoff
,
Theor. Chim. Acta
35
,
33
(
1974
).
4.
R. J.
Buenker
,
S. D.
Peyerimholf
, and
P. J.
Bruna
,
Computational Theoretical Organic Chemistry
(
Reidel
,
Dordrecht
,
1981
), p.
55
.
5.
S.
Evangelisti
,
J.-P.
Daudey
, and
J.-P.
Malrieu
,
Chem. Phys.
75
,
91
(
1983
).
6.
R. J.
Harrison
,
J. Chem. Phys.
94
,
5021
(
1991
).
7.
C.
Angeli
,
R.
Cimiraglia
,
M.
Persico
, and
A.
Toniolo
,
Theor. Chem. Acc.
98
,
57
(
1997
).
8.
C.
Angeli
and
M.
Persico
,
Theor. Chem. Acc.
98
,
117
(
1997
).
9.
E.
Giner
,
A.
Scemama
, and
M.
Caffarel
,
Can. J. Chem.
91
,
879
(
2013
).
10.
E.
Giner
,
A.
Scemama
, and
M.
Caffarel
,
J. Chem. Phys.
142
,
044115
(
2015
).
11.
S.
Sharma
,
A. A.
Holmes
,
G.
Jeanmairet
,
A.
Alavi
, and
C. J.
Umrigar
,
J. Chem. Theory Comput.
13
,
1595
(
2017
).
12.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
131
,
054106
(
2009
).
13.
G. H.
Booth
and
A.
Alavi
,
J. Chem. Phys.
132
,
174104
(
2010
).
14.
G. H.
Booth
,
D.
Cleland
,
A. J. W.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
135
,
084104
(
2011
).
15.
K.
Ghanem
,
A. Y.
Lozovoi
, and
A.
Alavi
,
J. Chem. Phys.
151
,
224108
(
2019
).
16.
E.
Vitale
,
A.
Alavi
, and
D.
Kats
,
J. Chem. Theory Comput.
16
,
5621
(
2020
).
17.
G. K.-L.
Chan
and
S.
Sharma
,
Annu. Rev. Phys. Chem.
62
,
465
(
2011
).
18.
A.
Baiardi
and
M.
Reiher
,
J. Chem. Phys.
152
,
040903
(
2020
).
19.
T.
Kato
,
Commun. Pure Appl. Math.
10
,
151
(
1957
).
20.
D. P.
Tew
,
J. Chem. Phys.
129
,
014104
(
2008
).
21.
E. A.
Hylleraas
,
Z. Phys.
54
,
347
(
1929
).
22.
W.
Kutzelnigg
,
Theor. Chim. Acta
68
,
445
(
1985
).
23.
W.
Kutzelnigg
and
W.
Klopper
,
J. Chem. Phys.
94
,
1985
(
1991
).
24.
J.
Noga
and
W.
Kutzelnigg
,
J. Chem. Phys.
101
,
7738
(
1994
).
25.
A.
Savin
, in
Recent Advances in Density Functional Theory
, edited by
D. P.
Chong
(
World Scientific
,
1995
), pp.
129
153
.
26.
J.
Toulouse
,
F.
Colonna
, and
A.
Savin
,
Phys. Rev. A
70
,
062505
(
2004
).
27.
P.
Gori-Giorgi
and
A.
Savin
,
Phys. Rev. A
73
,
032506
(
2006
).
28.
O.
Franck
,
B.
Mussard
,
E.
Luppi
, and
J.
Toulouse
,
J. Chem. Phys.
142
,
074107
(
2015
).
29.
J. G.
Ángyán
,
I. C.
Gerber
,
A.
Savin
, and
J.
Toulouse
,
Phys. Rev. A
72
,
012510
(
2005
).
30.
E.
Goll
,
H.-J.
Werner
, and
H.
Stoll
,
Phys. Chem. Chem. Phys.
7
,
3917
(
2005
).
31.
J.
Toulouse
,
I. C.
Gerber
,
G.
Jansen
,
A.
Savin
, and
J. G.
Ángyán
,
Phys. Rev. Lett.
102
,
096404
(
2009
).
32.
B. G.
Janesko
,
T. M.
Henderson
, and
G. E.
Scuseria
,
J. Chem. Phys.
130
,
081105
(
2009
).
33.
J.
Toulouse
,
W.
Zhu
,
A.
Savin
,
G.
Jansen
, and
J. G.
Ángyán
,
J. Chem. Phys.
135
,
084119
(
2011
).
34.
B.
Mussard
,
P.
Reinhardt
,
J. G.
Ángyán
, and
J.
Toulouse
,
J. Chem. Phys.
142
,
154123
(
2015
);
[PubMed]
B.
Mussard
,
P.
Reinhardt
,
J. G.
Ángyán
, and
J.
Toulouse
,
J. Chem. Phys.
142
,
219901
(
2015
).
[PubMed]
35.
C.
Kalai
and
J.
Toulouse
,
J. Chem. Phys.
148
,
164105
(
2018
).
36.
C.
Kalai
,
B.
Mussard
, and
J.
Toulouse
,
J. Chem. Phys.
151
,
074102
(
2019
).
37.
T.
Leininger
,
H.
Stoll
,
H.-J.
Werner
, and
A.
Savin
,
Chem. Phys. Lett.
275
,
151
(
1997
).
38.
E.
Fromager
,
J.
Toulouse
, and
H. J. A.
Jensen
,
J. Chem. Phys.
126
,
074111
(
2007
).
39.
E.
Fromager
,
R.
Cimiraglia
, and
H. J. A.
Jensen
,
Phys. Rev. A
81
,
024502
(
2010
).
40.
E. D.
Hedegård
,
S.
Knecht
,
J. S.
Kielberg
,
H. J. A.
Jensen
, and
M.
Reiher
,
J. Chem. Phys.
142
,
224108
(
2015
).
41.
E. D.
Hedegård
,
J.
Toulouse
, and
H. J. A.
Jensen
,
J. Chem. Phys.
148
,
214103
(
2018
).
42.
A.
Ferté
,
E.
Giner
, and
J.
Toulouse
,
J. Chem. Phys.
150
,
084103
(
2019
).
43.
B.
Mussard
and
J.
Toulouse
,
Mol. Phys.
115
,
161
(
2017
).
44.
S.
Ten-no
,
Theor. Chem. Acc.
131
,
1070
(
2012
).
45.
S.
Ten-no
and
J.
Noga
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
114
(
2012
).
46.
C.
Hättig
,
W.
Klopper
,
A.
Köhn
, and
D. P.
Tew
,
Chem. Rev.
112
,
4
(
2012
).
47.
L.
Kong
,
F. A.
Bischoff
, and
E. F.
Valeev
,
Chem. Rev.
112
,
75
(
2012
).
48.
A.
Grüneis
,
S.
Hirata
,
Y.-Y.
Ohnishi
, and
S.
Ten-no
,
J. Chem. Phys.
146
,
080901
(
2017
).
49.
Q.
Ma
and
H.-J.
Werner
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1371
(
2018
).
50.
J. O.
Hirschfelder
,
J. Chem. Phys.
39
,
3145
(
1963
).
51.
S. F.
Boys
and
N. C.
Handy
,
Proc. R. Soc. London, Ser. A
309
,
209
(
1969
).
52.
S. F.
Boys
and
N. C.
Handy
,
Proc. R. Soc. London, Ser. A
310
,
43
(
1969
).
53.
F. S.
Boys
,
C. N.
Handy
, and
J. W.
Linnett
,
Proc. R. Soc. London, Ser. A
310
,
63
(
1969
).
55.
S.
Ten-no
,
Chem. Phys. Lett.
330
,
169
(
2000
).
56.
O.
Hino
,
Y.
Tanimura
, and
S.
Ten-no
,
J. Chem. Phys.
115
,
7865
(
2001
).
57.
O.
Hino
,
Y.
Tanimura
, and
S.
Ten-no
,
Chem. Phys. Lett.
353
,
317
(
2002
).
58.
S.
Ten-no
,
Chem. Phys. Lett.
330
,
175
(
2000
).
59.
S.
Ten-no
and
F. R.
Manby
,
J. Chem. Phys.
119
,
5358
(
2003
).
60.
N.
Umezawa
and
S.
Tsuneyuki
,
J. Chem. Phys.
119
,
10015
(
2003
).
61.
N.
Umezawa
,
S.
Tsuneyuki
,
T.
Ohno
,
K.
Shiraishi
, and
T.
Chikyow
,
J. Chem. Phys.
122
,
224101
(
2005
).
62.
H.
Luo
,
J. Chem. Phys.
133
,
154109
(
2010
).
63.
H.
Luo
,
J. Chem. Phys.
135
,
024109
(
2011
).
64.
T.
Yanai
and
T.
Shiozaki
,
J. Chem. Phys.
136
,
084107
(
2012
).
65.
E.
Neuscamman
,
T.
Yanai
, and
G. K.-L.
Chan
,
Int. Rev. Phys. Chem.
29
,
231
(
2010
).
66.
M.
Motta
,
T. P.
Gujarati
,
J. E.
Rice
,
A.
Kumar
,
C.
Masteran
,
J. A.
Latone
,
E.
Lee
,
E. F.
Valeev
, and
T. Y.
Takeshita
,
Phys. Chem. Chem. Phys.
22
,
24270
(
2020
).
67.
M.
Ochi
,
K.
Sodeyama
,
R.
Sakuma
, and
S.
Tsuneyuki
,
J. Chem. Phys.
136
,
094108
(
2012
).
68.
M.
Ochi
and
S.
Tsuneyuki
,
J. Chem. Theory Comput.
10
,
4098
(
2014
).
69.
M.
Ochi
and
S.
Tsuneyuki
,
Chem. Phys. Lett.
621
,
177
(
2015
).
70.
M.
Ochi
,
Y.
Yamamoto
,
R.
Arita
, and
S.
Tsuneyuki
,
J. Chem. Phys.
144
,
104109
(
2016
).
71.
Y.
Imamura
and
G. E.
Scuseria
,
J. Chem. Phys.
118
,
2464
(
2003
).
72.
N.
Umezawa
and
T.
Chikyow
,
Phys. Rev. A
73
,
062116
(
2006
).
73.
N.
Umezawa
,
J. Chem. Phys.
147
,
104104
(
2017
).
74.
A. J.
Cohen
,
H.
Luo
,
K.
Guther
,
W.
Dobrautz
,
D. P.
Tew
, and
A.
Alavi
,
J. Chem. Phys.
151
,
061101
(
2019
).
75.
K. E.
Schmidt
and
J. W.
Moskowitz
,
J. Chem. Phys.
93
,
4172
(
1990
).
76.
W.
Dobrautz
,
H.
Luo
, and
A.
Alavi
,
Phys. Rev. B
99
,
075119
(
2019
).
77.
M. C.
Gutzwiller
,
Phys. Rev. Lett.
10
,
159
(
1963
).
78.
W. F.
Brinkman
and
T. M.
Rice
,
Phys. Rev. B
2
,
4302
(
1970
).
79.
E. A.
Hylleraas
,
The Schrödinger Two-Electron Atomic Problem
(
Academic Press
,
1964
), pp.
1
33
.
80.
81.
S.
Ten-no
,
J. Chem. Phys.
121
,
117
(
2004
).
82.
S.
Ten-no
,
J. Chem. Phys.
126
,
014108
(
2007
).
83.
D. P.
Tew
and
W.
Klopper
,
J. Chem. Phys.
123
,
074101
(
2005
).
84.
C. M.
Johnson
,
S.
Hirata
, and
S.
Ten-no
,
Chem. Phys. Lett.
683
,
247
(
2017
).
85.
Y.
Garniron
,
K.
Gasperich
,
T.
Applencourt
,
A.
Benali
,
A.
Ferté
,
J.
Paquier
,
B.
Pradines
,
R.
Assaraf
,
P.
Reinhardt
,
J.
Toulouse
,
P.
Barbaresco
,
N.
Renon
,
G.
David
,
J. P.
Malrieu
,
M.
Véril
,
M.
Caffarel
,
P. F.
Loos
,
E.
Giner
, and
A.
Scemama
,
J. Chem. Theory Comput.
15
,
3591
(
2019
).
86.
E. R.
Davidson
,
S. A.
Hagstrom
,
S. J.
Chakravorty
,
V. M.
Umar
, and
C. F.
Fischer
,
Phys. Rev. A
44
,
7071
(
1991
).
87.
C. J.
Umrigar
and
X.
Gonze
,
Phys. Rev. A
50
,
3827
(
1994
).
88.
J.
Toulouse
,
F.
Colonna
, and
A.
Savin
,
J. Chem. Phys.
122
,
014110
(
2005
).
89.
G. C.
Lie
and
E.
Clementi
,
J. Chem. Phys.
60
,
1275
(
1974
).
You do not currently have access to this content.