Accurately simulating the linear and nonlinear electronic spectra of condensed phase systems and accounting for all physical phenomena contributing to spectral line shapes presents a significant challenge. Vibronic transitions can be captured through a harmonic model generated from the normal modes of a chromophore, but it is challenging to also include the effects of specific chromophore–environment interactions within such a model. We work to overcome this limitation by combining approaches to account for both explicit environment interactions and vibronic couplings for simulating both linear and nonlinear optical spectra. We present and show results for three approaches of varying computational cost for combining ensemble sampling of chromophore–environment configurations with Franck–Condon line shapes for simulating linear spectra. We present two analogous approaches for nonlinear spectra. Simulated absorption spectra and two-dimensional electronic spectra (2DES) are presented for the Nile red chromophore in different solvent environments. Employing an average Franck–Condon or 2DES line shape appears to be a promising method for simulating linear and nonlinear spectroscopy for a chromophore in the condensed phase.

1.
M.
Bondanza
,
M.
Nottoli
,
L.
Cupellini
,
F.
Lipparini
, and
B.
Mennucci
, “
Polarizable embedding QM/MM: The future gold standard for complex (bio)systems?
,”
Phys. Chem. Chem. Phys.
22
,
14433
14448
(
2020
).
2.
C.
Puzzarini
,
J.
Bloino
,
N.
Tasinato
, and
V.
Barone
, “
Accuracy and interpretability: The devil and the holy grail. New routes across old boundaries in computational spectroscopy
,”
Chem. Rev.
119
,
8131
8191
(
2019
).
3.
T.
Giovannini
,
F.
Egidi
, and
C.
Cappelli
, “
Molecular spectroscopy of aqueous solutions: A theoretical perspective
,”
Chem. Soc. Rev.
49
,
5664
5677
(
2020
).
4.
T. J.
Zuehlsdorff
,
S. V.
Shedge
,
S.-Y.
Lu
,
H.
Hong
,
V. P.
Aguirre
,
L.
Shi
, and
C. M.
Isborn
, “
Vibronic and environmental effects in simulations of optical spectroscopy
,”
Annu. Rev. Phys. Chem.
(published online).
5.
A. A.
Voityuk
,
A. D.
Kummer
,
M.-E.
Michel-Beyerle
, and
N.
Rösch
, “
Absorption spectra of the GFP chromophore in solution: Comparison of theoretical and experimental results
,”
Chem. Phys.
269
,
83
91
(
2001
).
6.
C.
Olbrich
,
J.
Strümpfer
,
K.
Schulten
, and
U.
Kleinekathöfer
, “
Theory and simulation of the environmental effects on FMO electronic transitions
,”
J. Phys. Chem. Lett.
2
,
1771
1776
(
2011
).
7.
F. J. A.
Ferrer
,
R.
Improta
,
F.
Santoro
, and
V.
Barone
, “
Computing the inhomogeneous broadening of electronic transitions in solution: A first-principle quantum mechanical approach
,”
Phys. Chem. Chem. Phys.
13
,
17007
17012
(
2011
).
8.
B.
Nebgen
,
F. L.
Emmert
, and
L. V.
Slipchenko
, “
Vibronic coupling in asymmetric bichromophores: Theory and application to diphenylmethane
,”
J. Chem. Phys.
137
,
084112
(
2012
).
9.
F. J.
Avila Ferrer
,
J.
Cerezo
,
J.
Soto
,
R.
Improta
, and
F.
Santoro
, “
First-principle computation of absorption and fluorescence spectra in solution accounting for vibronic structure, temperature effects and solvent inhomogenous broadening
,”
J. Chem. Theory Comput.
1040-1041
,
328
337
(
2014
).
10.
A.
Halpin
,
P. J. M.
Johnson
,
R.
Tempelaar
,
R. S.
Murphy
,
J.
Knoester
,
T. L. C.
Jansen
, and
R. J. D.
Miller
, “
Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences
,”
Nat. Chem.
6
,
196
201
(
2014
).
11.
B.
Mennucci
, “
Modeling absorption and fluorescence solvatochromism with QM/classical approaches
,”
Int. J. Quantum Chem.
115
,
1202
1208
(
2015
).
12.
M. R.
Provorse
,
T.
Peev
,
C.
Xiong
, and
C. M.
Isborn
, “
Convergence of excitation energies in mixed quantum and classical solvent: Comparison of continuum and point charge models
,”
J. Phys. Chem. B
120
,
12148
12159
(
2016
).
13.
S. V.
Shedge
,
T. J.
Zuehlsdorff
,
M. J.
Servis
,
A. E.
Clark
, and
C. M.
Isborn
, “
Effect of ions on the optical absorption spectra of aqueously solvated chromophores
,”
J. Phys. Chem. A
123
,
6175
6184
(
2019
).
14.
T. J.
Zuehlsdorff
and
C. M.
Isborn
, “
Combining the ensemble and Franck-Condon approaches for calculating spectral shapes of molecules in solution
,”
J. Chem. Phys.
148
,
024110
(
2018
).
15.
M.
Fortino
,
E.
Collini
,
A.
Pedone
, and
J.
Bloino
, “
Role of specific solute–solvent interactions on the photophysical properties of distyryl substituted BODIPY derivatives
,”
Phys. Chem. Chem. Phys.
22
,
10981
10994
(
2020
).
16.
J.
Franck
, “
Elementary processes of photochemical reactions
,”
J. Trans. Faraday Soc.
21
,
536
542
(
1925
).
17.
E.
Condon
, “
A Theory of intensity distribution in band systems
,”
Phys. Rev.
28
,
1182
1201
(
1926
).
18.
L. S.
Cederbaum
and
W.
Domcke
, “
A many-body approach to the vibrational structure in molecular electronic spectra. I. Theory
,”
J. Chem. Phys.
64
,
603
(
1976
).
19.
M.
Roche
, “
On the polyatomic Franck-Condon factors
,”
Chem. Phys. Lett.
168
,
556
558
(
1990
).
20.
R.
Islampour
,
M.
Dehestani
, and
S. H.
Lin
, “
A new expression for multidimensional Franck-Condon integrals
,”
J. Mol. Spectrosc.
194
,
179
184
(
1999
).
21.
A.
Toniolno
and
M.
Persico
, “
Efficient calculation of Franck-Condon factors and vibronic couplings in polyatomics
,”
J. Comput. Chem.
22
,
968
975
(
1999
).
22.
A.
Hazra
and
M.
Nooijen
, “
Derivation and efficient implementation of a recursion formula to calculate harmonic Franck-Condon factors for polyatomic molecules
,”
Int. J. Quantum Chem.
95
,
643
657
(
2003
).
23.
M.
Dierksen
and
S.
Grimme
, “
An efficient approach for the calculation of Franck-Condon integrals of large molecules
,”
J. Chem. Phys.
122
,
244101
(
2005
).
24.
J. M.
Luis
,
M.
Torrent-Sucarrat
,
M.
Solà
,
D. M.
Bishop
, and
B.
Kirtman
, “
Calculation of Franck-Condon factors including anharmonicity: Simulation of the C2H4+X2̃B3uC2H4X1̃Ag band in the photoelectron spectrum of ethylene
,”
J. Chem. Phys.
122
,
184104
(
2005
).
25.
F.
Santoro
,
A.
Lami
,
R.
Improta
,
J.
Bloino
, and
V.
Barone
, “
Effective method for the computation of optical spectra of large molecules at finite temperature including the Duschinsky and Herzberg–Teller effect: The QX band of porphyrin as a case study
,”
J. Chem. Phys.
128
,
224311
(
2008
).
26.
F.
Santoro
and
D.
Jacquemin
, “
Going beyond the vertical approximation with time-dependent density functional theory
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
6
,
460
486
(
2016
).
27.
H.-C.
Jankowiak
,
J. L.
Stuber
, and
R.
Berger
, “
Vibronic transitions in large molecular systems: Rigorous prescreening conditions for Franck-Condon factors
,”
J. Chem. Phys.
127
,
234101
(
2007
).
28.
J.
Bloino
,
M.
Biczysko
,
F.
Santoro
, and
V.
Barone
, “
General approach to compute vibrationally resolved one-photon electronic spectra
,”
J. Chem. Theory Comput.
6
,
1256
1274
(
2010
).
29.
A.
Baiardi
,
J.
Bloino
, and
V.
Barone
, “
General time dependent approach to vibronic spectroscopy including Franck-Condon, Herzberg–Teller, and Duschinsky effects
,”
J. Chem. Theory Comput.
9
,
4097
4115
(
2013
).
30.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
).
31.
S.
Mukamel
and
D.
Abramavicius
, “
Many-body approaches for simulating coherent nonlinear spectroscopies for electronic and vibrational excitons
,”
Chem. Rev.
104
,
2073
2098
(
2004
).
32.
S.
Miertuš
,
E.
Scrocco
, and
J.
Tomasi
, “
Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects
,”
Chem. Phys.
55
,
117
129
(
1981
).
33.
R.
Cammi
and
J.
Tomasi
, “
Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: Iterative versus matrix-inversion procedures and the renormalization of the apparent charges
,”
J. Comput. Chem.
16
,
1449
1458
(
1995
).
34.
M.
Cossi
,
G.
Scalmani
,
N.
Rega
, and
V.
Barone
, “
New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution
,”
J. Chem. Phys.
117
,
43
54
(
2002
).
35.
G.
Scalmani
and
M. J.
Frisch
, “
Continuous surface charge polarizable continuum models of solvation. I. General formalism
,”
J. Chem. Phys.
132
,
114110
(
2010
).
36.
B.
Mennucci
, “
Polarizable continuum model
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
386
404
(
2012
).
37.
T. J.
Zuehlsdorff
,
J. A.
Napoli
,
J. M.
Milanese
,
T. E.
Markland
, and
C. M.
Isborn
, “
Unraveling electronic absorption spectra using nuclear quantum effects: Photoactive yellow protein and green fluorescent protein chromophores in water
,”
J. Chem. Phys.
149
,
024107
(
2018
).
38.
A.
Mukazhanova
,
K. J.
Trerayapiwat
,
A.
Mazaheripour
,
A. G.
Wardrip
,
N. C.
Frey
,
H.
Nguyen
,
A. A.
Gorodetsky
, and
S.
Sharifzadeh
, “
Accurate first-principles calculation of the vibronic spectrum of stacked perylene tetracarboxylic acid diimides
,”
J. Phys. Chem. A
124
,
3055
3063
(
2020
).
39.
J.
Cerezo
,
D.
Aranda
,
F. J.
Avila Ferrer
,
G.
Prampolini
, and
F.
Santoro
, “
Adiabatic-molecular dynamics generalized vertical Hessian approach: A mixed quantum classical method to compute electronic spectra of flexible molecules in the condensed phase
,”
J. Chem. Theory Comput.
16
,
1215
1231
(
2020
).
40.
J.
Cerezo
and
F.
Santoro
, “
Revisiting vertical models to simulate the line shape of electronic spectra adopting Cartesian and internal coordinates
,”
J. Chem. Theor. Comput.
12
,
4970
4985
(
2016
).
41.
F. J.
Avila Ferrer
and
F.
Santoro
, “
Comparison of vertical and adiabatic harmonic approaches for the calculation of the vibrational structure of electronic spectra
,”
Phys. Chem. Chem. Phys.
14
,
13549
13563
(
2012
).
42.
S.
Del Galdo
,
M.
Fusè
, and
V.
Barone
, “
Cpl spectra of camphor derivatives in solution by an integrated QM/MD approach
,”
Front. Chem.
8
,
584
(
2020
).
43.
S.
Del Galdo
,
M.
Fusè
, and
V.
Barone
, “
The ONIOM/PMM model for effective yet accurate simulation of optical and chiroptical spectra in solution: Camphorquinone in methanol as a case study
,”
J. Chem. Theory Comput.
16
,
3294
3306
(
2020
).
44.
S.
Mukamel
, “
Fluorescence and absorption of large anharmonic molecules—Spectroscopy without eigenstates
,”
J. Phys. Chem.
89
,
1077
1087
(
1985
).
45.
T. J.
Zuehlsdorff
,
A.
Montoya-Castillo
,
J. A.
Napoli
,
T. E.
Markland
, and
C. M.
Isborn
, “
Optical spectra in the condensed phase: Capturing anharmonic and vibronic features using dynamic and static approaches
,”
J. Chem. Phys.
151
,
074111
(
2019
).
46.
T. J.
Zuehlsdorff
,
H.
Hong
,
L.
Shi
, and
C. M.
Isborn
, “
Nonlinear spectroscopy in the condensed phase: The role of Duschinsky rotations and third order cumulant contributions
,”
J. Chem. Phys.
153
,
044127
(
2020
).
47.
M. S.
Chen
,
T. J.
Zuehlsdorff
,
T.
Morawietz
,
C. M.
Isborn
, and
T. E.
Markland
, “
Exploiting machine learning to efficiently predict multidimensional optical spectra in complex environments
,”
J. Phys. Chem. Lett.
11
,
7559
7568
(
2020
).
48.
B.
Li
,
A. E.
Johnson
,
S.
Mukamel
, and
A. B.
Myers
, “
The Brownian oscillator model for solvation effects in spontaneous light emission and their relationship to electron transfer
,”
J. Am. Chem. Soc.
116
,
11039
11047
(
1994
).
49.
F.
Duschinsky
, “
The importance of the electron spectrum in multi atomic molecules. Concerning the Franck-Condon principle
,”
Acta Physicochim. URSS
7
,
551
566
(
1937
).
50.
E. U.
Condon
, “
Nuclear motions associated with electron transitions in diatomic molecules
,”
Phys. Rev.
32
,
858
872
(
1928
).
51.
M.
Biczysko
,
J.
Bloino
,
F.
Santoro
, and
V.
Barone
, “
Time-independent approaches to simulate electronic spectra lineshapes: From small molecules to macrosystems
,” in
Computational Strategies for Spectroscopy
(
John Wiley & Sons, Ltd.
,
2011
), Chap. 8, pp.
361
443
.
52.
V.
Barone
,
J.
Bloino
,
M.
Biczysko
, and
F.
Santoro
, “
Fully integrated approach to compute vibrationally resolved optical spectra: From small molecules to macrosystems
,”
J. Chem. Theory Comput.
5
,
540
554
(
2009
).
53.
A.
Lami
and
F.
Santoro
, “
Time-dependent approaches to calculation of steady-state vibronic spectra: From fully quantum to classical approaches
,” in
Computational Strategies for Spectroscopy
(
John Wiley & Sons, Ltd.
,
2011
), Chap. 10, pp.
475
516
.
54.
J. R.
Reimers
, “
A practical method for the use of curvilinear coordinates in calculations of normal-mode-projected displacements and Duschinsky rotation matrices for large molecules
,”
J. Chem. Phys.
115
,
9103
9109
(
2001
).
55.
R.
Borrelli
and
A.
Peluso
, “
The vibrational progressions of the n → v electronic transition of ethylene: A test case for the computation of Franck-Condon factors of highly flexible photoexcited molecules
,”
J. Chem. Phys.
125
,
194308
(
2006
).
56.
A.
Baiardi
,
J.
Bloino
, and
V.
Barone
, “
General formulation of vibronic spectroscopy in internal coordinates
,”
J. Chem. Phys.
144
,
084114
(
2016
).
57.
C. M.
Isborn
,
A. W.
Götz
,
M. A.
Clark
,
R. C.
Walker
, and
T. J.
Martínez
, “
Electronic absorption spectra from MM and ab initio QM/MM molecular dynamics: Environmental effects on the absorption spectrum of photoactive yellow protein
,”
J. Chem. Theory Comput.
8
,
5092
5106
(
2012
).
58.
J. M.
Milanese
,
M. R.
Provorse
,
E.
Alameda
, and
C. M.
Isborn
, “
Convergence of computed aqueous absorption spectra with explicit quantum mechanical solvent
,”
J. Chem. Theory Comput.
13
,
2159
2171
(
2017
).
59.
R.
Crespo-Otero
and
M.
Barbatti
, “
Spectrum simulation and decomposition with nuclear ensemble: Formal derivation and application to benzene, furan and 2-phenylfuran
,”
Theor. Chem. Acc.
131
,
1237
(
2012
).
60.
X.
Ge
,
I.
Timrov
,
S.
Binnie
,
A.
Biancardi
,
A.
Calzolari
, and
S.
Baroni
, “
Accurate and inexpensive prediction of the color optical properties of anthocyanins in solution
,”
J. Phys. Chem. A
119
,
3816
3822
(
2015
).
61.
A. V.
Marenich
,
C. J.
Cramer
, and
D. G.
Truhlar
, “
Electronic absorption spectra and solvatochromic shifts by the vertical excitation model: Solvated clusters and molecular dynamics sampling
,”
J. Phys. Chem. B
119
,
958
967
(
2015
).
62.
S.
Srsen
,
J.
Sita
,
P.
Slavicek
,
V.
Ladanyi
, and
D.
Heger
, “
Limits of the nuclear ensemble method for electronic spectra simulations: Temperature dependence of the (E)-azobenzene spectrum
,”
J. Chem. Theory Comput.
16
,
6428
6438
(
2020
).
63.
T. J.
Zuehlsdorff
,
P. D.
Haynes
,
F.
Hanke
,
M. C.
Payne
, and
N. D. M.
Hine
, “
Solvent effects on electronic excitations of an organic chromophore
,”
J. Chem. Theory Comput.
12
,
1853
1861
(
2016
).
64.
M.
Retegan
,
F.
Neese
, and
D. A.
Pantazis
, “
Convergence of QM/MM and cluster models for the spectroscopic properties of the oxygen-evolving complex in photosystem II
,”
J. Chem. Theory Comput.
9
,
3832
3842
(
2013
).
65.
O.
Valsson
,
P.
Campomanes
,
I.
Tavernelli
,
U.
Rothlisberger
, and
C.
Filippi
, “
Rhodopsin absorption from first principles: Bypassing common pitfalls
,”
J. Chem. Theory Comput.
9
,
2441
2454
(
2013
).
66.
D. J.
Cole
,
A. W.
Chin
,
N. D. M.
Hine
,
P. D.
Haynes
, and
M. C.
Payne
, “
Toward ab initio optical spectroscopy of the Fenna–Matthews–Olson complex
,”
J. Phys. Chem. Lett.
4
,
4206
4212
(
2013
).
67.
E. V.
Doktorov
,
I. A.
Malkin
, and
V. I.
Man’ko
, “
Dynamical symmetry of vibronic transitions in polyatomic molecules and the Franck-Condon principle
,”
J. Mol. Spectrosc.
64
,
302
326
(
1977
).
68.
T. R.
Faulkner
and
F. S.
Richardson
, “
On the calculation of polyatomic Franck-Condon factors: Application to the 1A1g1B2u absorption band of benzene
,”
J. Chem. Phys.
70
,
1201
1213
(
1979
).
69.
Y.
Niu
,
Q.
Peng
,
C.
Deng
,
X.
Gao
, and
Z.
Shuai
, “
Theory of excited state decays and optical spectra: Application to polyatomic molecules
,”
J. Phys. Chem. A
114
,
7817
7831
(
2010
).
70.
J.-L.
Rivail
and
D.
Rinaldi
, “
A quantum chemical approach to dielectric solvent effects in molecular liquids
,”
Chem. Phys.
18
,
233
242
(
1976
).
71.
S.
Miertuš
,
E.
Scrocco
, and
J.
Tomasi
, “
Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects
,”
Chem. Phys.
55
,
117
129
(
1981
).
72.
C. J.
Cramer
and
D. G.
Truhlar
, “
Implicit solvation models: Equilibria, structure, spectra, and dynamics
,”
Chem. Rev.
99
,
2161
2200
(
1999
).
73.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
, “
Quantum mechanical continuum solvation models
,”
Chem. Rev.
105
,
2999
3094
(
2005
).
74.
R. A.
Marcus
, “
Relation between charge transfer absorption and fluorescence spectra and the inverted region
,”
J. Phys. Chem.
93
,
3078
3086
(
1989
).
75.
J.
Cerezo
,
F. J.
Avila Ferrer
,
G.
Prampolini
, and
F.
Santoro
, “
Modeling solvent broadening on the vibronic spectra of a series of coumarin dyes. From implicit to explicit solvent models
,”
J. Chem. Theory Comput.
11
,
5810
5825
(
2015
).
76.
R.
Zaleśny
,
N. A.
Murugan
,
F.
Gel’mukhanov
,
Z.
Rinkevicius
,
B.
Ośmiałowski
,
W.
Bartkowiak
, and
H.
Ågren
, “
Toward fully nonempirical simulations of optical band shapes of molecules in solution: A case study of heterocyclic ketoimine difluoroborates
,”
J. Phys. Chem. A
119
,
5145
5152
(
2015
).
77.
F. J.
Avila Ferrer
,
M. D.
Davari
,
D.
Morozov
,
G.
Groenhof
, and
F.
Santoro
, “
The lineshape of the electronic spectrum of the green fluorescent protein chromophore, Part II: Solution phase
,”
ChemPhysChem
15
,
3246
3257
(
2014
).
78.
T. J.
Zuehlsdorff
and
C. M.
Isborn
, “
Modeling absorption spectra of molecules in solution
,”
Int. J. Quantum Chem.
119
,
e25719
(
2019
).
79.
A.
Nenov
,
A.
Giussani
,
B. P.
Fingerhut
,
I.
Rivalta
,
E.
Dumont
,
S.
Mukamel
, and
M.
Garavelli
, “
Spectral lineshapes in nonlinear electronic spectroscopy
,”
Phys. Chem. Chem. Phys.
17
,
30925
30936
(
2015
).
80.
M.
Kowalewski
,
B. P.
Fingerhut
,
K. E.
Dorfman
,
K.
Bennett
, and
S.
Mukamel
, “
Simulating coherent multidimensional spectroscopy of nonadiabatic molecular processes: From the infrared to the x-ray regime
,”
Chem. Rev.
117
,
12165
12226
(
2017
).
81.
T.
Begušić
and
J.
Vaníček
, “
On-the-fly ab initio semiclassical evaluation of third-order response functions for two-dimensional electronic spectroscopy
,”
J. Chem. Phys.
153
,
184110
(
2020
).
82.
S. A.
Egorov
,
K. F.
Everitt
, and
J. L.
Skinner
, “
Quantum dynamics and vibrational relaxation
,”
J. Phys. Chem. A
103
,
9494
9499
(
1999
).
83.
H.
Kim
and
P. J.
Rossky
, “
Evaluation of quantum correlation functions from classical data
,”
J. Phys. Chem. B
106
,
8240
(
2002
).
84.
R.
Ramírez
,
T.
López-Ciudad
,
P.
Kumar P
, and
D.
Marx
, “
Quantum corrections to classical time-correlation functions: Hydrogen bonding and anharmonic floppy modes
,”
J. Chem. Phys.
121
,
3973
(
2004
).
85.
S.
Valleau
,
A.
Eisfeld
, and
A.
Aspuru-Guzik
, “
On the alternatives for bath correlators and spectral densities from mixed quantum-classical simulations
,”
J. Chem. Phys.
137
,
224103
(
2012
).
86.
A.
Anda
,
D.
Abramavičius
, and
T.
Hansen
, “
Two-dimensional electronic spectroscopy of anharmonic molecular potentials
,”
Phys. Chem. Chem. Phys.
20
,
1642
1652
(
2018
).
87.
T. J.
Zuehlsdorff
,
H.
Hong
,
L.
Shi
, and
C. M.
Isborn
, “
Influence of electronic polarization on the spectral density
,”
J. Phys. Chem. B
124
,
531
543
(
2020
).
88.
D. A.
Case
,
K.
Belfon
,
I.
Ben-Shalom
,
S.
Brozell
,
D.
Cerutti
,
T.
Cheatham
 III
,
V.
Cruzeiro
,
T.
Darden
,
R.
Duke
,
G.
Giambasu
,
M.
Gilson
,
H.
Gohlke
,
A.
Goetz
,
R.
Harris
,
S.
Izadi
,
S.
Izmailov
,
K.
Kasavajhala
,
A.
Kovalenko
,
R.
Krasny
,
T.
Kurtzman
,
T.
Lee
,
S.
LeGrand
,
P.
Li
,
C.
Lin
,
J.
Liu
,
T.
Luchko
,
R.
Luo
,
V.
Man
,
K. M.
Merz
,
Y.
Miao
,
O.
Mikhailovskii
,
G.
Monard
,
H.
Nguyen
,
A.
Onufriev
,
F.
Pan
,
S.
Pantano
,
R.
Qi
,
D.
Roe
,
A.
Roitberg
,
C.
Sagui
,
S.
Schott-Verdugo
,
J.
Shen
,
C.
Simmerling
,
N.
Skrynnikov
,
J.
Smith
,
J.
Swails
,
R.
Walker
,
J.
Wang
,
L.
Wilson
,
R.
Wolf
,
X.
Wu
,
Y.
Xiong
,
Y.
Xue
,
D.
York
, and
P.
Kollman
, Amber 2020,
2020
.
89.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
, “
Development and testing of a general amber force field
,”
J. Comput. Chem.
25
,
1157
1174
(
2004
).
90.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
91.
C. M.
Isborn
,
N.
Luehr
,
I. S.
Ufimtsev
, and
T. J.
Martínez
, “
Excited-state electronic structure with configuration interaction singles and Tamm-Dancoff time-dependent density functional theory on graphical processing units
,”
J. Chem. Theory Comput.
7
,
1814
1823
(
2011
).
92.
S.
Seritan
,
C.
Bannwarth
,
B. S.
Fales
,
E. G.
Hohenstein
,
C. M.
Isborn
,
S. I. L.
Kokkila-Schumacher
,
X.
Li
,
F.
Liu
,
N.
Luehr
,
J. W.
Snyder
, Jr.
,
C.
Song
,
A. V.
Titov
,
I. S.
Ufimtsev
,
L.-P.
Wang
, and
T. J.
Martinez
, “
TeraChem: A graphical processing unit-accelerated electronic structure package for large-scale ab initio molecular dynamics
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
(published online).
93.
A. L.
Fetter
and
J. D.
Walecka
,
Quantum Theory of Many-Particle Systems
(
Courier Corporation
,
2012
).
94.
S.
Hirata
and
M.
Head-Gordon
, “
Time-dependent density functional theory within the Tamm–Dancoff approximation
,”
Chem. Phys. Lett.
314
,
291
299
(
1999
).
95.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
, “
A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP)
,”
Chem. Phys. Lett.
393
,
51
57
(
2004
).
96.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16, Revision C.01,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
97.
B.
de Souza
,
F.
Neese
, and
R.
Izsák
, “
On the theoretical prediction of fluorescence rates from first principles using the path integral approach
,”
J. Chem. Phys.
148
,
034104
(
2018
).
98.
R.
Cammi
and
B.
Mennucci
, “
Linear response theory for the polarizable continuum model
,”
J. Chem. Phys.
110
,
9877
9886
(
1999
).
99.
M.
Cossi
and
V.
Barone
, “
Time-dependent density functional theory for molecules in liquid solutions
,”
J. Chem. Phys.
115
,
4708
4717
(
2001
).
100.
B.
Mennucci
,
E.
Cancès
, and
J.
Tomasi
, “
Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: Theoretical bases, computational implementation, and numerical applications
,”
J. Phys. Chem. B
101
,
10506
10517
(
1997
).
101.
R.
Improta
,
G.
Scalmani
,
M. J.
Frisch
, and
V.
Barone
, “
Toward effective and reliable fluorescence energies in solution by a new state specific polarizable continuum model time dependent density functional theory approach
,”
J. Chem. Phys.
127
,
074504
(
2007
).
102.
M.
Caricato
,
B.
Mennucci
,
J.
Tomasi
,
F.
Ingrosso
,
R.
Cammi
,
S.
Corni
, and
G.
Scalmani
, “
Formation and relaxation of excited states in solution: A new time dependent polarizable continuum model based on time dependent density functional theory
,”
J. Chem. Phys.
124
,
124520
(
2006
).
103.
D.
Jacquemin
,
A.
Planchat
,
C.
Adamo
, and
B.
Mennucci
, “
TD-DFT assessment of functionals for optical 0–0 transitions in solvated dyes
,”
J. Chem. Theory Comput.
8
,
2359
2372
(
2012
).
104.
C. A.
Guido
,
B.
Mennucci
,
D.
Jacquemin
, and
C.
Adamo
, “
Planar vs twisted intramolecular charge transfer mechanism in Nile Red: New hints from theory
,”
Phys. Chem. Chem. Phys.
12
,
8016
8023
(
2010
).
105.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
, “
Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions
,”
J. Chem. Phys.
72
,
650
654
(
1980
).
106.
P. C.
Hariharan
and
J. A.
Pople
, “
The influence of polarization functions on molecular orbital hydrogenation energies
,”
Theor. Chim. Acta
28
,
213
222
(
1973
).
107.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
, “
Self—Consistent molecular orbital methods. XII. Further extensions of Gaussian—Type basis sets for use in molecular orbital studies of organic molecules
,”
J. Chem. Phys.
56
,
2257
2261
(
1972
).
108.
M. M.
Davis
and
H. B.
Helzer
, “
Titrimetric and equilibrium studies using indicators related to Nile Blue A
,”
Anal. Chem.
38
,
451
461
(
1966
).
109.
A.
Segalina
,
J.
Cerezo
,
G.
Prampolini
,
F.
Santoro
, and
M.
Pastore
, “
Accounting for vibronic features through a mixed quantum-classical scheme: Structure, dynamics, and absorption spectra of a perylene diimide dye in solution
,”
J. Chem. Theory Comput.
16
,
7061
(
2020
).
110.
E. R.
Kjellgren
,
J. M.
Haugaard Olsen
, and
J.
Kongsted
, “
Importance of accurate structures for quantum chemistry embedding methods: Which strategy is better?
,”
J. Chem. Theory Comput.
14
,
4309
4319
(
2018
).
111.
E.
Epifanovsky
,
I.
Polyakov
,
B.
Grigorenko
,
A.
Nemukhin
, and
A. I.
Krylov
, “
Quantum chemical benchmark studies of the electronic properties of the green fluorescent protein chromophore. 1. Electronically excited and ionized states of the anionic chromophore in the gas phase
,”
J. Chem. Theory Comput.
5
,
1895
1906
(
2009
).
112.
M.
Uppsten
and
B.
Durbeej
, “
Quantum chemical comparison of vertical, adiabatic, and 0-0 excitation energies: The PYP and GFP chromophores
,”
J. Comput. Chem.
33
,
1892
1901
(
2012
).
113.
D.
Grabarek
and
T.
Andruniów
, “
Assessment of functionals for TDDFT calculations of one- and two-photon absorption properties of neutral and anionic fluorescent proteins chromophores
,”
J. Chem. Theory Comput.
15
,
490
508
(
2019
).

Supplementary Material

You do not currently have access to this content.