Wave functions based on electron-pair states provide inexpensive and reliable models to describe quantum many-body problems containing strongly correlated electrons, given that broken-pair states have been appropriately accounted for by, for instance, a posteriori corrections. In this article, we analyze the performance of electron-pair methods in predicting orbital-based correlation spectra. We focus on the (orbital-optimized) pair-coupled cluster doubles (pCCD) ansatz with a linearized coupled-cluster (LCC) correction. Specifically, we scrutinize how orbital-based entanglement and correlation measures can be determined from a pCCD-tailored CC wave function. Furthermore, we employ the single-orbital entropy, the orbital-pair mutual information, and the eigenvalue spectra of the two-orbital reduced density matrices to benchmark the performance of the LCC correction for the one-dimensional Hubbard model with the periodic boundary condition as well as the N2 and F2 molecules against density matrix renormalization group reference calculations. Our study indicates that pCCD-LCC accurately reproduces the orbital-pair correlation patterns in the weak correlation limit and for molecules close to their equilibrium structure. Hence, we can conclude that pCCD-LCC predicts reliable wave functions in this regime.

1.
E.
van Besien
,
K.
Pierloot
, and
C.
Görller-Walrand
, “
Electronic spectra of uranyl chloride complexes in acetone: A CASSCF/CASPT2 investigation
,”
Phys. Chem. Chem. Phys.
8
,
4311
(
2006
).
2.
J.
Paulovic
,
T.
Nakajima
,
K.
Hirao
, and
L.
Seijo
,
J. Chem. Phys.
117
,
3597
(
2002
).
3.
B.
Jeziorski
, “
Multireference coupled-cluster Ansatz
,”
Mol. Phys.
108
,
3043
3054
(
2010
).
4.
D. I.
Lyakh
,
M.
Musiał
,
V. F.
Lotrich
, and
R. J.
Bartlett
, “
Multireference nature of chemistry: The coupled-cluster view
,”
Chem. Rev.
112
,
182
243
(
2012
).
5.
V. V.
Ivanov
,
D. I.
Lyakh
, and
L.
Adamowicz
, “
Multireference state-specific coupled-cluster methods. State-of-the-art and perspectives
,”
Phys. Chem. Chem. Phys.
11
,
2355
2370
(
2009
).
6.
S. R.
White
, “
Density matrix formulation for quantum renormalization groups
,”
Phys. Rev. Lett.
69
,
2863
2866
(
1992
).
7.
S. R.
White
, “
Density-matrix algorithms for quantum renormalization groups
,”
Phys. Rev. B
48
,
10345
10356
(
1993
).
8.
S. R.
White
and
R. L.
Martin
, “
Ab initio quantum chemistry using the density matrix renormalization group
,”
J. Chem. Phys.
110
,
4127
4130
(
1999
).
9.
Ö.
Legeza
,
R. M.
Noack
,
J.
Sólyom
, and
L.
Tincani
, “
Applications of quantum information in the density-matrix renormalization group
,” in
Computational Many-Particle Physics
, Lecture Notes Phys. Vol. 739, edited by
H.
Fehske
,
R.
Schneider
, and
A.
Weiße
(
Springer, Berlin/Heidelerg
,
2008
), pp.
653
664
.
10.
K. H.
Marti
and
M.
Reiher
, “
The density matrix renormalization group algorithm in quantum chemistry
,”
Z. Phys. Chem.
224
,
583
599
(
2010
).
11.
G. K.-L.
Chan
and
S.
Sharma
, “
The density matrix renormalization group in quantum chemistry
,”
Annu. Rev. Phys. Chem.
62
,
465
481
(
2011
).
12.
S.
Szalay
,
M.
Pfeffer
,
V.
Murg
,
G.
Barcza
,
F.
Verstraete
,
R.
Schneider
, and
Ö.
Legeza
, “
Tensor product methods and entanglement optimization for ab initio quantum chemistry
,”
Int. J. Quantum Chem.
115
,
1342
1391
(
2015
).
13.
J.
Hachmann
,
W.
Cardoen
, and
G. K.-L.
Chan
, “
Multireference correlation in long molecules with the quadratic scaling density matrix renormalization group
.”
J. Chem. Phys.
125
,
144101
(
2006
).
14.
Y.
Kurashige
and
T.
Yanai
, “
High-performance ab initio density matrix renormalization group method: Applicability to large-scale multireference problems for metal compounds
.”
J. Chem. Phys.
130
,
234114
(
2009
).
15.
T.
Yanai
,
Y.
Kurashige
,
W.
Mizukami
,
J.
Chalupský
,
T. N.
Lan
, and
M.
Saitow
, “
Density matrix renormalization group for ab initio calculations and associated dynamic correlation methods: A review of theory and applications
,”
Int. J. Quantum Chem.
115
,
283
299
(
2015
).
16.
A.
Baiardi
and
M.
Reiher
, “
The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges
,”
J. Chem. Phys.
152
,
040903
(
2020
).
17.
K.
Gunst
,
F.
Verstraete
,
S.
Wouters
,
Ö.
Legeza
, and
D.
Van Neck
, “
T3NS: Three-legged tree tensor network states
,”
J. Chem. Theory Comput.
14
,
2026
2033
(
2018
).
18.
Y.
Ma
,
S.
Knecht
,
S.
Keller
, and
M.
Reiher
, “
Second-order self-consistent-field density-matrix renormalization group
,”
J. Chem. Theory Comput.
13
,
2533
2549
(
2017
).
19.
S.
Zhang
, “
Auxiliary-field quantum Monte Carlo for correlated electron systems
,” in
Emergent Phenomena in Correlated Matter: Autumn School Organized by the Forschungszentrum Jülich and the German Research School for Simulation Sciences at Forschungszentrum Jülich 23-27 September 2013
, Lecture Notes of the Autumn School Correlated Electrons 2013 Vol. 3 (
Forschungszentrum Jülich
,
2013
).
20.
S.
Hochkeppel
,
T. C.
Lang
,
C.
Brünger
,
F. F.
Assaad
, and
W.
Hanke
,
High Performance Computing in Science and Engineering, Garching/Munich 2007: Transactions of the Third Joint HLRB and KONWIHR Status and Result Workshop, Dec. 3–4, 2007, Leibniz Supercomputing Centre, Garching/Munich, Germany
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2009
), Chap. Quantum Monte Carlo Studies of Strongly Correlated Electron Systems, pp.
669
686
.
21.
A. C.
Hurley
,
J.
Lennard-Jones
, and
J. A.
Pople
, “
The molecular orbital theory of chemical valency. XVI. A theory of paired-electrons in polyatomic molecules
,”
Proc. R. Soc. London, Ser. A
220
,
446
455
(
1953
).
22.
J. M.
Parks
and
R. G.
Parr
, “
Theory of separated electron pairs
,”
J. Chem. Phys.
28
,
335
345
(
1958
).
23.
A. J.
Coleman
, “
Structure of fermion density matrices. II. Antisymmetrized geminal powers
,”
J. Math. Phys.
6
,
1425
1431
(
1965
).
24.
S.
Bratoz
and
P.
Durand
, “
Transposition of the theories describing superconducting systems to molecular systems. Method for biorbitals
,”
J. Chem. Phys.
43
,
2670
2679
(
1965
).
25.
D. M.
Silver
, “
Natural orbital expansion of interacting geminals
,”
J. Chem. Phys.
50
,
5108
5116
(
1969
).
26.
D. M.
Silver
, “
Bilinear orbital expansion of geminal-product correlated wavefunctions
,”
J. Chem. Phys.
52
,
299
303
(
1970
).
27.
G.
Náray-Szabó
, “
All-pair wavefunction for many-electron states with the highest multiplicity
,”
J. Chem. Phys.
58
,
1775
1776
(
1973
).
28.
G.
Náray-Szabó
, “
All-pair wave function and reduced variational equation for electronic systems
,”
Int. J. Qunatum Chem.
9
,
9
21
(
1975
).
29.
P. R.
Surján
, “
Interaction of chemical bonds: Strictly localized wave functions in orthogonal basis
,”
Phys. Rev. A
30
,
43
50
(
1984
).
30.
P. R.
Surján
,
I.
Mayer
, and
I.
Lukovits
, “
Interaction of chemical bonds. II. Ab initio theory for overlap, delocalization, and dispersion interactions
,”
Phys. Rev. A
32
,
748
755
(
1985
).
31.
P. R.
Surján
, “
The interaction of chemical bonds. III. Perturbed strictly localized geminals in LMO basis
,”
Int. J. Quantum Chem.
52
,
563
574
(
1994
).
32.
P. R.
Surján
, “
The interaction of chemical bonds IV. Interbond charge transfer by a coupled-cluster-type formalism
,”
Int. J. Quantum Chem.
55
,
109
116
(
1995
).
33.
P. R.
Surjan
, “
An introduction to the theory of geminals
,” in
Correlation and Localization
(
Springer
,
1999
), pp.
63
88
.
34.
E.
Rosta
and
P. R.
Surján
, “
Interaction of chemical bonds. V. Perturbative corrections to geminal-type wave functions
,”
Int. J. Quantum Chem.
80
,
96
104
(
2000
).
35.
P. R.
Surján
,
Á.
Szabados
,
P.
Jeszenszki
, and
T.
Zoboki
, “
Strongly orthogonal geminals: Size-extensive and variational reference states
,”
J. Math. Chem.
50
,
534
551
(
2012
).
36.
P. A.
Limacher
,
P. W.
Ayers
,
P. A.
Johnson
,
S.
De Baerdemacker
,
D.
Van Neck
, and
P.
Bultinck
, “
A new mean-field method suitable for strongly correlated electrons: Computationally facile antisymmetric products of nonorthogonal geminals
,”
J. Chem. Theory Comput.
9
,
1394
1401
(
2013
).
37.
K.
Boguslawski
,
P.
Tecmer
,
P. W.
Ayers
,
P.
Bultinck
,
S.
De Baerdemacker
, and
D.
Van Neck
, “
Efficient description of strongly correlated electrons
,”
Phys. Rev. B
89
,
201106(R)
(
2014
).
38.
T.
Stein
,
T. M.
Henderson
, and
G. E.
Scuseria
, “
Seniority zero pair coupled cluster doubles theory
,”
J. Chem. Phys.
140
,
214113
(
2014
).
39.
K.
Boguslawski
,
P.
Tecmer
, and
Ö.
Legeza
, “
Analysis of two-orbital correlations in wave functions restricted to electron-pair states
,”
Phys. Rev. B
94
,
155126
(
2016
).
40.
T.
Zoboki
,
Á.
Szabados
, and
P. R.
Surján
, “
Linearized coupled cluster corrections to antisymmetrized product of strongly orthogonal geminals: Role of dispersive interactions
,”
J. Chem. Theory Comput.
9
,
2602
2608
(
2013
).
41.
P.
Tecmer
,
K.
Boguslawski
,
P. A.
Johnson
,
P. A.
Limacher
,
M.
Chan
,
T.
Verstraelen
, and
P. W.
Ayers
, “
Assessing the accuracy of new geminal-based approaches
,”
J. Phys. Chem. A
118
,
9058
9068
(
2014
).
42.
T. M.
Henderson
,
I. W.
Bulik
,
T.
Stein
, and
G. E.
Scuseria
, “
Seniority-based coupled cluster theory
,”
J. Chem. Phys.
141
,
244104
(
2014
).
43.
K.
Boguslawski
and
P.
Tecmer
, “
Orbital entanglement in quantum chemistry
,”
Int. J. Quantum Chem.
115
,
1289
1295
(
2015
).
44.
K.
Boguslawski
and
P.
Tecmer
, “
Erratum: Orbital entanglement in quantum chemistry
,”
Int. J. Quantum Chem.
117
,
e25455
(
2017
).
45.
A. J.
Garza
,
A. G.
Sousa Alencar
, and
G. E.
Scuseria
, “
Actinide chemistry using singlet-paired coupled cluster and its combinations with density functionals
,”
J. Chem. Phys.
143
,
244106
(
2015
).
46.
K.
Boguslawski
and
P. W.
Ayers
, “
Linearized coupled cluster correction on the antisymmetric product of 1-reference orbital geminals
,”
J. Chem. Theory Comput.
11
,
5252
5261
(
2015
).
47.
P.
Tecmer
,
K.
Boguslawski
,
M.
Borkowski
,
P. S.
Żuchowski
, and
D.
Kędziera
, “
Modeling the electronic structures of the ground and excited states of the ytterbium atom and the ytterbium dimer: A modern quantum chemistry perspective
,”
Int. J. Quantum Chem.
119
,
e25983
(
2019
).
48.
P.
Tecmer
,
K.
Boguslawski
, and
P. W.
Ayers
, “
Singlet ground state actinide chemistry with geminals
,”
Phys. Chem. Chem. Phys.
17
,
14427
14436
(
2015
).
49.
A.
Nowak
,
P.
Tecmer
, and
K.
Boguslawski
, “
Assessing the accuracy of simplified coupled cluster methods for electronic excited states in f0 actinide compounds
,”
Phys. Chem. Chem. Phys.
21
,
19039
19053
(
2019
).
50.
F.
Weinhold
and
E. B.
Wilson
, Jr.
, “
Reduced density matrices of atoms and molecules. I. The 2 matrix of double-occupancy, configuration-interaction wavefunctions for singlet states
,”
J. Chem. Phys.
46
,
2752
2758
(
1967
).
51.
A.
Veillard
and
E.
Clementi
, “
Complete multi-configuration self-consistent field theory
,”
Theor. Chim. Acta
7
,
133
143
(
1967
).
52.
K.
Boguslawski
,
P.
Tecmer
,
P. A.
Limacher
,
P. A.
Johnson
,
P. W.
Ayers
,
P.
Bultinck
,
S.
De Baerdemacker
, and
D.
Van Neck
, “
Projected seniority-two orbital optimization of the antisymmetric product of one-reference orbital geminal
,”
J. Chem. Phys.
140
,
214114
(
2014
).
53.
K.
Boguslawski
,
P.
Tecmer
,
P.
Bultinck
,
S.
De Baerdemacker
,
D.
Van Neck
, and
P. W.
Ayers
, “
Non-variational orbital optimization techniques for the AP1roG wave function
,”
J. Chem. Theory Comput.
10
,
4873
4882
(
2014
).
54.
K.
Pernal
, “
Intergeminal correction to the antisymmetrized product of strongly orthogonal geminals derived from the extended random phase approximation
,”
J. Chem. Theory Comput.
10
,
4332
4341
(
2014
).
55.
P.
Jeszenszki
,
P. R.
Nagy
,
T.
Zoboki
,
Á.
Szabados
, and
P. R.
Surján
, “
Perspectives of APSG-based multireference perturbation theories
,”
Int. J. Quantum Chem.
114
,
1048
1052
(
2014
).
56.
J. K.
Ellis
,
R. L.
Martin
, and
G. E.
Scuseria
, “
On pair functions for strong correlations
,”
J. Chem. Theory Comput.
9
,
2857
2869
(
2013
).
57.
V. A.
Rassolov
, “
A geminal model chemistry
,”
J. Chem. Phys.
117
,
5978
5987
(
2002
).
58.
P. A.
Limacher
,
P. W.
Ayers
,
P. A.
Johnson
,
S.
De Baerdemacker
,
D. V.
Neck
, and
P.
Bultinck
, “
Simple and inexpensive perturbative correction schemes for antisymmetric products of nonorthogonal geminals
,”
Phys. Chem. Chem. Phys.
16
,
5061
5065
(
2014
).
59.
K.
Boguslawski
and
P.
Tecmer
, “
Benchmark of dynamic electron correlation models for seniority-zero wave functions and their application to thermochemistry
,”
J. Chem. Theory Comput.
13
,
5966
5983
(
2017
).
60.
A. J.
Garza
,
I. W.
Bulik
,
T. M.
Henderson
, and
G. E.
Scuseria
, “
Range separated hybrids of pair coupled cluster doubles and density functionals
,”
Phys. Chem. Chem. Phys.
17
,
22412
22422
(
2015
).
61.
A. J.
Garza
,
I. W.
Bulik
,
T. M.
Henderson
, and
G. E.
Scuseria
, “
Synergy between pair coupled cluster doubles and pair density functional theory
,”
J. Chem. Phys.
142
,
044109
(
2015
).
62.
K.
Boguslawski
, “
Erratum: ‘Targeting excited states in all-trans polyenes with electron-pair states’ [J. Chem. Phys. 145, 234105 (2016)]
,”
J. Chem. Phys.
147
,
139901
(
2017
).
63.
K.
Boguslawski
, “
Targeting doubly excited states with equation of motion coupled cluster theory restricted to double excitations
,”
J. Chem. Theory Comput.
15
,
18
24
(
2019
).
64.
F.
Brzęk
,
K.
Boguslawski
,
P.
Tecmer
, and
P. S.
Żuchowski
, “
Benchmarking the accuracy of seniority-zero wave function methods for noncovalent interactions
,”
J. Chem. Theory Comput.
15
,
4021
4035
(
2019
).
65.
P.
Ziesche
, “
Correlation strength and information entropy
,”
Int. J. Quantum Chem.
56
,
363
369
(
1995
).
66.
Ö.
Legeza
and
J.
Sólyom
, “
Optimizing the density-matrix renormalization group method using quantum information entropy
,”
Phys. Rev. B
68
,
195116
(
2003
).
67.
Ö.
Legeza
and
J.
Sólyom
, “
Two-site entropy and quantum phase transitions in low-dimensional models
,”
Phys. Rev. Lett.
96
,
116401
(
2006
).
68.
J.
Rissler
,
R. M.
Noack
, and
S. R.
White
, “
Measuring orbital interaction using quantum information theory
,”
Chem. Phys.
323
,
519
531
(
2006
).
69.
L.
Ding
,
S.
Mardazad
,
S.
Das
,
S.
Szalay
,
U.
Schollwöck
,
Z.
Zimborás
, and
C.
Schilling
, “
Concept of orbital entanglement and correlation in quantum chemistry
,”
J. Chem. Theory Comput.
17
,
79
95
(
2021
).
70.
C.
Schilling
and
R.
Schilling
, “
Number-parity effect for confined fermions in one dimension
,”
Phys. Rev. A
93
,
021601
(
2016
).
71.
V.
Vedral
, “
Quantum entanglement
,”
Nat. Phys.
10
,
256
258
(
2014
).
72.
C.
Schilling
, “
The quantum marginal problem
,” in
Mathematical Results in Quantum Mechanics
(
World Scientific Publishing Company
,
2014
), pp.
165
176
; arXiv:1404.1085.
73.
L.
Ding
and
C.
Schilling
, “
Correlation paradox of the dissociation limit: Formal discussion and quantitative resolution based on quantum information theory
,”
J. Chem. Theory Comput.
16
,
4159
4175
(
2020
).
74.
G.
Barcza
,
Ö.
Legeza
,
K. H.
Marti
, and
M.
Reiher
, “
Quantum-information analysis of electronic states of different molecular structures
,”
Phys. Rev. A
83
,
012508
(
2011
).
75.
K.
Boguslawski
,
P.
Tecmer
,
Ö.
Legeza
, and
M.
Reiher
, “
Entanglement measures for single- and multireference correlation effects
,”
J. Phys. Chem. Lett.
3
,
3129
3135
(
2012
).
76.
K.
Boguslawski
,
P.
Tecmer
,
G.
Barcza
,
Ö.
Legeza
, and
M.
Reiher
, “
Orbital entanglement in bond-formation processes
,”
J. Chem. Theory Comput.
9
,
2959
2973
(
2013
).
77.
P.
Tecmer
,
K.
Boguslawski
,
Ö.
Legeza
, and
M.
Reiher
, “
Unravelling the quantum-entanglement effect of noble gas coordination on the spin ground state of CUO
,”
Phys. Chem. Chem. Phys.
16
,
719
727
(
2014
).
78.
M.
Mottet
,
P.
Tecmer
,
K.
Boguslawski
,
Ö.
Legeza
, and
M.
Reiher
, “
Quantum entanglement in carbon–carbon, carbon–phosphorus and silicon–silicon bonds
,”
Phys. Chem. Chem. Phys.
16
,
8872
8880
(
2014
).
79.
C.
Duperrouzel
,
P.
Tecmer
,
K.
Boguslawski
,
G.
Barcza
,
Ö.
Legeza
, and
P. W.
Ayers
, “
A quantum informational approach for dissecting chemical reactions
,”
Chem. Phys. Lett.
621
,
160
164
(
2015
).
80.
Y.
Zhao
,
K.
Boguslawski
,
P.
Tecmer
,
C.
Duperrouzel
,
G.
Barcza
,
Ö.
Legeza
, and
P. W.
Ayers
, “
Dissecting the bond-formation process of d10-metal–ethene complexes with multireference approaches
,”
Theor. Chem. Acc.
134
,
120
(
2015
).
81.
K.
Boguslawski
,
F.
Réal
,
P.
Tecmer
,
C.
Duperrouzel
,
A. S. P.
Gomes
,
Ö.
Legeza
,
P. W.
Ayers
, and
V.
Vallet
, “
On the multi-reference nature of plutonium oxides: PuO22+, PuO2, PuO3 and PuO2(OH)2
,”
Phys. Chem. Chem. Phys.
19
,
4317
4329
(
2017
).
82.
A.
Leszczyk
,
Ö.
Legeza
,
M.
Máté
, and
K.
Boguslawski
, “
Assessing the accuracy of tailored coupled cluster methods corrected by electronic wave functions of polynomial cost
” (unpublished) (
2021
).
83.
S.
Szalay
,
G.
Barcza
,
T.
Szilvási
,
L.
Veis
, and
Ö.
Legeza
, “
The correlation theory of the chemical bond
,”
Sci. Rep.
7
,
2237
(
2017
).
84.
C. J.
Stein
and
M.
Reiher
, “
Automated selection of active orbital spaces
,”
J. Chem. Theory Comput.
12
,
1760
1771
(
2016
).
85.
C. J.
Stein
and
M.
Reiher
, “
autoCAS: A program for fully automated multiconfigurational calculations
,”
J. Comput. Chem.
40
,
2216
2226
(
2019
).
86.
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
87.
F.
Brzęk
,
A.
Leszczyk
,
A.
Nowak
,
K.
Boguslawski
,
D.
Kędziera
,
P.
Tecmer
, and
P. S.
Żuchowski
(
2020
). “
PyBESTv.1.0.0 (version v1.0.0)
,” Zenodo.
88.
Ö.
Legeza
,
L.
Veis
, and
T.
Mosoni
, QC-DMRG-Budapest, a Program for Quantum Chemical DMRG Calculations. Copyright 2000–2020, HAS RISSPO Budapest.
89.
Ö.
Legeza
and
J.
Sólyom
, “
Quantum data compression, quantum information generation, and the density-matrix renormalization-group method
,”
Phys. Rev. B
70
,
205118
(
2004
).
90.
G. K.-L.
Chan
,
M.
Kállay
, and
J.
Gauss
, “
State-of-the-art density matrix renormalization group and coupled cluster theory studies of the nitrogen binding curve
,”
J. Chem. Phys.
121
,
6110
6116
(
2004
).
91.
K.
Kowalski
and
P.
Piecuch
, “
A comparison of the renormalized and active-space coupled-cluster methods: Potential energy curves of BH and F2
,”
Chem. Phys. Lett.
344
,
165
175
(
2001
).
92.
J.
Hubbard
, “
Electron correlations in narrow energy bands
,”
Proc. R. Soc. London, Ser. A
276
,
238
257
(
1963
).

Supplementary Material

You do not currently have access to this content.