This work presents algorithms for the efficient enumeration of configuration spaces following Boltzmann-like statistics, with example applications to the calculation of non-radiative rates, and an open-source implementation. Configuration spaces are found in several areas of physics, particularly wherever there are energy levels that possess variable occupations. In bosonic systems, where there are no upper limits on the occupation of each level, enumeration of all possible configurations is an exceptionally hard problem. We look at the case where the levels need to be filled to satisfy an energy criterion, for example, a target excitation energy, which is a type of knapsack problem as found in combinatorics. We present analyses of the density of configuration spaces in arbitrary dimensions and how particular forms of kernel can be used to envelope the important regions. In this way, we arrive at three new algorithms for enumeration of such spaces that are several orders of magnitude more efficient than the naive brute force approach. Finally, we show how these can be applied to the particular case of internal conversion rates in a selection of molecules and discuss how a stochastic approach can, in principle, reduce the computational complexity to polynomial time.

1.
J. P.
Sethna
,
Statistical Mechanics: Entropy, Order Parameters, and Complexity
, Oxford Master Series in Statistical, Computational, and Theoretical Physics No. 14 (
Oxford University Press
,
Oxford, New York
,
2006
).
2.
B.
Hirshberg
,
V.
Rizzi
, and
M.
Parrinello
, “
Path integral molecular dynamics for bosons
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
21445
21449
(
2019
).
3.
J.
Katriel
,
R.
Pauncz
, and
J. J. C.
Mulder
, “
Studies in the configuration interaction method. II. Generating functions and recurrence relations for the number of many-particle configurations
,”
Int. J. Quantum Chem.
23
,
1855
1867
(
1983
).
4.
A.
Torre
,
L.
Lain
, and
J.
Millan
, “
Calculation of the dimension of full configuration interaction spaces: Application to the determination of spectroscopic terms
,”
J. Mol. Struct.: THEOCHEM
287
,
63
66
(
1993
).
5.
A. I.
Streltsov
,
O. E.
Alon
, and
L. S.
Cederbaum
, “
General mapping for bosonic and fermionic operators in Fock space
,”
Phys. Rev. A
81
,
022124
(
2010
).
6.
J.-C.
Pain
and
M.
Poirier
, “
Analytical and numerical expressions for the number of atomic configurations contained in a supershell
,”
J. Phys. B: At., Mol. Opt. Phys.
53
,
115002
(
2020
).
7.
D. F.
Heller
,
K. F.
Freed
, and
W. M.
Gelbart
, “
Dependence of radiationless decay rates in polyatomic molecules upon the initially selected vibronic state: General theory and application
,”
J. Chem. Phys.
56
,
2309
2328
(
1972
).
8.
D. F.
Heller
and
K. F.
Freed
, “
Energy dependence of nonradiative decay in polyatomic molecules
,”
Int. J. Quantum Chem.
6
,
267
277
(
1972
).
9.
V. G.
Plotnikov
, “
Regularities of the processes of radiationless conversion in polyatomic molecules
,”
Int. J. Quantum Chem.
16
,
527
541
(
1979
).
10.
M.
Bixon
and
J.
Jortner
, “
Intramolecular radiationless transitions
,”
J. Chem. Phys.
48
,
715
726
(
1968
).
11.
S.
Martello
and
P.
Toth
,
Knapsack Problems: Algorithms and Computer Implementations
, Wiley-Interscience Series in Discrete Mathematics and Optimization (
J. Wiley & Sons
,
Chichester, New York
,
1990
).
12.
J.
Franck
and
E. G.
Dymond
, “
Elementary processes of photochemical reactions
,”
Trans. Faraday Soc.
21
,
536
(
1926
).
13.
H.
Kellerer
,
U.
Pferschy
, and
D.
Pisinger
, “
Introduction to NP-completeness of knapsack problems
,” in
Knapsack Problems
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2004
), pp.
483
493
.
14.
V. V.
Vazirani
,
Approximation Algorithms
, 2nd ed. (
Springer
,
Berlin Heidelberg
,
2003
), p.
249006472
.
15.
K. E.
Knowles
,
E. A.
McArthur
, and
E. A.
Weiss
, “
A multi-timescale map of radiative and nonradiative decay pathways for excitons in CdSe quantum dots
,”
ACS Nano
5
,
2026
2035
(
2011
).
16.
C.
Hauswald
,
P.
Corfdir
,
J. K.
Zettler
,
V. M.
Kaganer
,
K. K.
Sabelfeld
,
S.
Fernández-Garrido
,
T.
Flissikowski
,
V.
Consonni
,
T.
Gotschke
,
H. T.
Grahn
,
L.
Geelhaar
, and
O.
Brandt
, “
Origin of the nonradiative decay of bound excitons in GaN nanowires
,”
Phys. Rev. B
90
,
165304
(
2014
).
17.
D.
Noy
,
C. C.
Moser
, and
P. L.
Dutton
, “
Design and engineering of photosynthetic light-harvesting and electron transfer using length, time, and energy scales
,”
Biochim. Biophys. Acta, Bioenerg.
1757
,
90
105
(
2006
).
18.
K.
Wang
,
Z.
Gao
,
W.
Zhang
,
Y.
Yan
,
H.
Song
,
X.
Lin
,
Z.
Zhou
,
H.
Meng
,
A.
Xia
,
J.
Yao
, and
Y. S.
Zhao
, “
Exciton funneling in light-harvesting organic semiconductor microcrystals for wavelength-tunable lasers
,”
Sci. Adv.
5
,
eaaw2953
(
2019
).
19.
F.
Häse
,
L. M.
Roch
,
P.
Friederich
, and
A.
Aspuru-Guzik
, “
Designing and understanding light-harvesting devices with machine learning
,”
Nat. Commun.
11
,
4587
(
2020
).
20.
R. R.
Valiev
,
V. N.
Cherepanov
,
G. V.
Baryshnikov
, and
D.
Sundholm
, “
First-principles method for calculating the rate constants of internal-conversion and intersystem-crossing transitions
,”
Phys. Chem. Chem. Phys.
20
,
6121
6133
(
2018
).
21.
R. R.
Valiev
,
V. N.
Cherepanov
,
R. T.
Nasibullin
,
D.
Sundholm
, and
T.
Kurten
, “
Calculating rate constants for intersystem crossing and internal conversion in the Franck–Condon and Herzberg–Teller approximations
,”
Phys. Chem. Chem. Phys.
21
,
18495
18500
(
2019
).
22.
R. R.
Valiev
,
R. T.
Nasibullin
,
V. N.
Cherepanov
,
G. V.
Baryshnikov
,
D.
Sundholm
,
H.
Ågren
,
B. F.
Minaev
, and
T.
Kurtén
, “
First-principles calculations of anharmonic and deuteration effects on the photophysical properties of polyacenes and porphyrinoids
,”
Phys. Chem. Chem. Phys.
22
,
22314
22323
(
2020
).
23.
R. A.
Shaw
, Knapsack v1.0, https://www.github.com/robashaw/knapsack, last accessed on 11 February 2021.
24.
S.
Banerjee
,
A.
Baiardi
,
J.
Bloino
, and
V.
Barone
, “
Temperature dependence of radiative and nonradiative rates from time-dependent correlation function methods
,”
J. Chem. Theory Comput.
12
,
774
786
(
2016
).
25.
H. S. M.
Coxeter
,
Regular Polytopes
, 3rd ed. (
Dover Publications
,
New York
,
1973
).
26.
D. A.
McQuarrie
,
Statistical Mechanics
(
University Science Books
,
Sausalito, CA
,
2000
).
27.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
3100
(
1988
).
28.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
29.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
30.
TURBOMOLE V7.5 2020, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from https://www.turbomole.org.
31.
S. G.
Balasubramani
,
G. P.
Chen
,
S.
Coriani
,
M.
Diedenhofen
,
M. S.
Frank
,
Y. J.
Franzke
,
F.
Furche
,
R.
Grotjahn
,
M. E.
Harding
,
C.
Hättig
,
A.
Hellweg
,
B.
Helmich-Paris
,
C.
Holzer
,
U.
Huniar
,
M.
Kaupp
,
A.
Marefat Khah
,
S.
Karbalaei Khani
,
T.
Müller
,
F.
Mack
,
B. D.
Nguyen
,
S. M.
Parker
,
E.
Perlt
,
D.
Rappoport
,
K.
Reiter
,
S.
Roy
,
M.
Rückert
,
G.
Schmitz
,
M.
Sierka
,
E.
Tapavicza
,
D. P.
Tew
,
C.
van Wüllen
,
V. K.
Voora
,
F.
Weigend
,
A.
Wodyński
, and
J. M.
Yu
, “
TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations
,”
J. Chem. Phys.
152
,
184107
(
2020
).
32.
J.
Neugebauer
,
M.
Reiher
,
C.
Kind
, and
B. A.
Hess
, “
Quantum chemical calculation of vibrational spectra of large molecules–Raman and IR spectra for Buckminsterfullerene
,”
J. Comput. Chem.
23
,
895
910
(
2002
).
33.
R.
Send
and
F.
Furche
, “
First-order nonadiabatic couplings from time-dependent hybrid density functional response theory: Consistent formalism, implementation, and performance
,”
J. Chem. Phys.
132
,
044107
(
2010
).
34.
S.
Grimme
and
M.
Waletzke
, “
A combination of Kohn–Sham density functional theory and multi-reference configuration interaction methods
,”
J. Chem. Phys.
111
,
5645
5655
(
1999
).
35.
I.
Lyskov
,
M.
Kleinschmidt
, and
C. M.
Marian
, “
Redesign of the DFT/MRCI Hamiltonian
,”
J. Chem. Phys.
144
,
034104
(
2016
).
36.
A.
Heil
and
C. M.
Marian
, “
DFT/MRCI Hamiltonian for odd and even numbers of electrons
,”
J. Chem. Phys.
147
,
194104
(
2017
).
37.
A. D.
Becke
, “
A new mixing of Hartree–Fock and local density-functional theories
,”
J. Chem. Phys.
98
,
1372
1377
(
1993
).
38.
M.
Baba
,
M.
Saitoh
,
K.
Taguma
,
K.
Shinohara
,
K.
Yoshida
,
Y.
Semba
,
S.
Kasahara
,
N.
Nakayama
,
H.
Goto
,
T.
Ishimoto
, and
U.
Nagashima
, “
Structure and excited-state dynamics of anthracene: Ultrahigh-resolution spectroscopy and theoretical calculation
,”
J. Chem. Phys.
130
,
134315
(
2009
).
39.
A.
Kearvell
and
F.
Wilkinson
, “
Internal conversion from the lowest excited singlet states of aromatic hydrocarbons
,”
Chem. Phys. Lett.
11
,
472
473
(
1971
).
40.
Y.
Harabuchi
,
K.
Saita
, and
S.
Maeda
, “
Exploring radiative and nonradiative decay paths in indole, isoindole, quinoline, and isoquinoline
,”
Photochem. Photobiol. Sci.
17
,
315
322
(
2018
).
41.
G.
Díaz Mirón
and
M. C.
González Lebrero
, “
Fluorescence quantum yields in complex environments from QM-MM TDDFT simulations: The case of indole in different solvents
,”
J. Phys. Chem. A
124
,
9503
9512
(
2020
).
42.
P. V.
Komarov
and
V. G.
Plotnikov
, “
Influence of intermolecular interactions on spectral-luminescent properties of a polyatomic molecule
,”
Int. J. Quantum Chem.
112
,
3039
3045
(
2012
).

Supplementary Material

You do not currently have access to this content.