Surface diffusion is important for a broad range of chemical and physical processes that take place at the surfaces of amorphous solids, including surface crystallization. In this work, the temporal evolution of nanoholes is monitored with atomic force microscopy to quantify the surface dynamics of amorphous selenium. In molecular glasses, the surface diffusion coefficient has been shown to scale with the surface crystal growth rate (us) according to the power relation usDs0.87. In this study, we observe that the same power law applies to surface crystallization of amorphous selenium, a representative inorganic polymer glass. Our study shows that the surface diffusion coefficient can be used to quantitatively predict surface crystallization rates in a chemically diverse range of materials.

1.
W.
Zhang
and
L.
Yu
,
Macromolecules
49
,
731
(
2016
).
2.
W.
Zhang
,
C. W.
Brian
, and
L.
Yu
,
J. Phys. Chem. B
119
,
5071
(
2015
).
3.
Y.
Chai
,
T.
Salez
,
J. D.
McGraw
,
M.
Benzaquen
,
K.
Dalnoki-Veress
,
E.
Raphael
, and
J. A.
Forrest
,
Science
343
,
994
(
2014
).
4.
Z.
Fakhraai
and
J. A.
Forrest
,
Science
319
,
600
(
2008
).
5.
C.
Huang
,
S.
Ruan
,
T.
Cai
, and
L.
Yu
,
J. Phys. Chem. B
121
,
9463
(
2017
).
6.
Y. H.
Li
 et al.,
Soft Matter
16
,
5062
(
2020
).
7.
S.
Ruan
,
W.
Zhang
,
Y.
Sun
,
M. D.
Ediger
, and
L.
Yu
,
J. Chem. Phys.
145
,
064503
(
2016
).
8.
L.
Yu
,
Adv. Drug Deliver. Rev.
100
,
3
(
2016
).
9.
L.
Zhu
 et al.,
Phys. Rev. Lett.
106
,
256103
(
2011
).
10.
S.
Ruan
,
D.
Musumeci
,
W.
Zhang
,
A.
Gujral
,
M. D.
Ediger
, and
L.
Yu
,
J. Chem. Phys.
146
,
203324
(
2017
).
11.
J. M.
Sallese
,
A.
Ils
,
D.
Bouvet
,
P.
Fazan
, and
C.
Merritt
,
J. Appl. Phys.
88
,
5751
(
2000
).
12.
D.
Llera-Hurlburt
,
A. S.
Dalton
, and
E. G.
Seebauer
,
Surf. Sci.
504
,
244
(
2002
).
13.
A. S.
Dalton
,
Y. V.
Kondratenko
, and
E. G.
Seebauer
,
Chem. Eng. Sci.
65
,
2172
(
2010
).
14.
C. R.
Cao
,
Y. M.
Lu
,
H. Y.
Bai
, and
W. H.
Wang
,
Appl. Phys. Lett.
107
,
141606
(
2015
).
15.
C. R.
Cao
,
L.
Yu
, and
J. H.
Perepezko
,
Appl. Phys. Lett.
116
,
231601
(
2020
).
16.
K. A.
Jackson
,
D. R.
Uhlmann
, and
J. D.
Hunt
,
J. Cryst. Growth
1
,
1
(
1967
).
17.
D. R.
Uhlmann
,
Crystal Growth in Glass Forming System
, Advances in Nucleation and Crystallization in Glasses (
American Ceramics Society
,
Ohio
,
1972
), pp.
91
115
.
18.
I. S.
Gutzow
and
J. W. P.
Schmelzer
,
The Vitreous State: Thermodynamics, Structure, Rheology, and Crystallization
(
Springer Berlin Heidelberg
,
2013
).
19.
J.
Barták
,
D.
Valdés
,
J.
Málek
,
V.
Podzemná
,
S.
Slang
, and
K.
Pálka
,
Cryst. Growth Des.
18
,
4103
(
2018
).
20.
J.
Barták
and
J.
Málek
,
J. Therm. Anal. Calorim.
110
,
275
(
2012
).
21.
J.
Barták
,
J.
Málek
,
P.
Koštál
,
H.
Segawa
, and
Y.
Yamabe-Mitarai
,
J. Appl. Phys.
115
,
123506
(
2014
).
22.
J.
Barták
,
V.
Podzemná
,
J.
Málek
,
G.
Eising
, and
B. J.
Kooi
,
J. Non-Cryst. Solids
410
,
7
(
2015
).
23.
S.
Martinkova
,
J.
Barták
,
P.
Koštál
,
J.
Málek
, and
H.
Segawa
,
J. Phys. Chem. B
121
,
7978
(
2017
).
24.
S.
Martinkova
,
J.
Barták
,
J.
Málek
, and
H.
Segawa
,
J. Appl. Phys.
120
,
145301
(
2016
).
25.
V.
Podzemná
,
J.
Barták
, and
J.
Málek
,
J. Therm. Anal. Calorim.
118
,
775
(
2014
).
26.
W. W.
Mullins
,
J. Appl. Phys.
30
,
77
(
1959
).
27.
B.
Paris
, U.S. patent 2,803,541 (
20 August 1957
).
28.
S.
Kasap
 et al.,
Sensors
11
,
5112
(
2011
).
29.
W.
Zhao
,
D. C.
Hunt
,
K.
Tanioka
, and
J. A.
Rowlands
,
Nucl. Instrum. Methods Phys. Res., Sect. A
549
,
205
(
2005
).
30.
S.
Ruan
,
Surface mobility of organic glasses probed by nano-particles and nano-holes
(
University of Wisconsin-Madison
,
Madison, Wiscosin, USA
,
2017
), p.
103
.
31.
M.
Hasebe
,
D.
Musumeci
, and
L.
Yu
,
J. Phys. Chem. B
119
,
3304
(
2015
).
32.
L.-H.
Lee
,
J. Non-Cryst. Solids
6
,
213
(
1971
).
33.
J. I.
Berg
and
R.
Simha
,
J. Non-Cryst. Solids
22
,
1
(
1976
).
34.
G.
Faivre
and
J. L.
Gardissat
,
Macromolecules
19
,
1988
(
1986
).
35.
A.
Eisenberg
and
A. V.
Tobolsky
,
J. Polym. Sci.
46
,
19
(
1960
).
36.
D.
Caprion
and
H. R.
Schober
,
J. Non-Cryst. Solids
326-327
,
369
(
2003
).
37.
D.
Caprion
and
H. R.
Schober
,
Phys. Rev. B
62
,
3709
(
2000
).
38.
A. H.
Goldan
,
C.
Li
,
S. J.
Pennycook
,
J.
Schneider
,
A.
Blom
, and
W.
Zhao
,
J. Appl. Phys.
120
,
135101
(
2016
).
39.
P.
Koštál
and
J.
Málek
,
J. Non-Cryst. Solids
356
,
2803
(
2010
).
40.
A.
Zhang
,
Y.
Jin
,
T.
Liu
,
R. B.
Stephens
, and
Z.
Fakhraai
,
Proc. Natl. Acad. Sci. U. S. A.
117
,
24076
(
2020
).
41.
M.
Hasebe
,
D.
Musumeci
,
C. T.
Powell
,
T.
Cai
,
E.
Gunn
,
L.
Zhu
, and
L.
Yu
,
J. Phys. Chem. B
118
,
7638
(
2014
).
You do not currently have access to this content.